Suppr超能文献

医疗保健中的人工智能——理解患者信息需求并设计可理解的透明度:定性研究。

Artificial Intelligence in Health Care-Understanding Patient Information Needs and Designing Comprehensible Transparency: Qualitative Study.

作者信息

Robinson Renee, Liday Cara, Lee Sarah, Williams Ishan C, Wright Melanie, An Sungjoon, Nguyen Elaine

机构信息

College of Pharmacy, Idaho State University, Anchorage, AK, US.

College of Pharmacy, Idaho State University, Pocatello, ID, US.

出版信息

JMIR AI. 2023;2:e46487. doi: 10.2196/46487. Epub 2023 Jun 19.

Abstract

BACKGROUND

Artificial intelligence (AI) is as a branch of computer science that uses advanced computational methods such as machine learning (ML), to calculate and/or predict health outcomes and address patient and provider health needs. While these technologies show great promise for improving healthcare, especially in diabetes management, there are usability and safety concerns for both patients and providers about the use of AI/ML in healthcare management.

OBJECTIVES

To support and ensure safe use of AI/ML technologies in healthcare, the team worked to better understand: 1) patient information and training needs, 2) the factors that influence patients' perceived value and trust in AI/ML healthcare applications; and 3) on how best to support safe and appropriate use of AI/ML enabled devices and applications among people living with diabetes.

METHODS

To understand general patient perspectives and information needs related to the use of AI/ML in healthcare, we conducted a series of focus groups (n=9) and interviews (n=3) with patients (n=40) and interviews with providers (n=6) in Alaska, Idaho, and Virginia. Grounded Theory guided data gathering, synthesis, and analysis. Thematic content and constant comparison analysis were used to identify relevant themes and sub-themes. Inductive approaches were used to link data to key concepts including preferred patient-provider-interactions, patient perceptions of trust, accuracy, value, assurances, and information transparency.

RESULTS

Key summary themes and recommendations focused on: 1) patient preferences for AI/ML enabled device and/or application information; 2) patient and provider AI/ML-related device and/or application training needs; 3) factors contributing to patient and provider trust in AI/ML enabled devices and/or application; and 4) AI/ML-related device and/or application functionality and safety considerations. A number of participant (patients and providers) recommendations to improve device functionality to guide information and labeling mandates (e.g., links to online video resources, and access to 24/7 live in-person or virtual emergency support). Other patient recommendations include: 1) access to practice devices; 2) connection to local supports and reputable community resources; 3) simplified display and alert limits.

CONCLUSION

Recommendations from both patients and providers could be used by Federal Oversight Agencies to improve utilization of AI/ML monitoring of technology use in diabetes, improving device safety and efficacy.

摘要

背景

人工智能(AI)是计算机科学的一个分支,它使用机器学习(ML)等先进的计算方法来计算和/或预测健康结果,并满足患者和医疗服务提供者的健康需求。虽然这些技术在改善医疗保健方面显示出巨大的前景,尤其是在糖尿病管理方面,但患者和医疗服务提供者对在医疗管理中使用人工智能/机器学习存在可用性和安全性方面的担忧。

目的

为了支持并确保在医疗保健中安全使用人工智能/机器学习技术,该团队努力更好地了解:1)患者的信息和培训需求;2)影响患者对人工智能/机器学习医疗应用的感知价值和信任的因素;3)如何最好地支持糖尿病患者安全、适当地使用人工智能/机器学习设备和应用程序。

方法

为了了解患者对在医疗保健中使用人工智能/机器学习的总体看法和信息需求,我们在阿拉斯加、爱达荷州和弗吉尼亚州对患者(n = 40)进行了一系列焦点小组讨论(n = 9)和访谈(n = 3),并对医疗服务提供者(n = 6)进行了访谈。扎根理论指导数据收集、综合和分析。采用主题内容和持续比较分析来确定相关主题和子主题。归纳方法用于将数据与关键概念联系起来,包括患者与医疗服务提供者的首选互动方式、患者对信任、准确性、价值、保证和信息透明度的看法。

结果

关键的总结主题和建议集中在:1)患者对人工智能/机器学习设备和/或应用程序信息的偏好;2)患者和医疗服务提供者与人工智能/机器学习相关的设备和/或应用程序培训需求;3)促成患者和医疗服务提供者对人工智能/机器学习设备和/或应用程序信任的因素;4)与人工智能/机器学习相关的设备和/或应用程序功能及安全考虑因素。许多参与者(患者和医疗服务提供者)建议改进设备功能,以指导信息和标签要求(例如,链接到在线视频资源,以及获得全天候的现场或虚拟紧急支持)。患者的其他建议包括:1)使用练习设备;2)连接到当地支持机构和信誉良好的社区资源;3)简化显示和警报限制。

结论

患者和医疗服务提供者的建议可供联邦监督机构用于提高对糖尿病患者使用人工智能/机器学习监测技术的利用率,提高设备的安全性和有效性。

相似文献

2
Trustworthy and ethical AI-enabled cardiovascular care: a rapid review.
BMC Med Inform Decis Mak. 2024 Sep 4;24(1):247. doi: 10.1186/s12911-024-02653-6.
4
Artificial intelligence technologies and compassion in healthcare: A systematic scoping review.
Front Psychol. 2023 Jan 17;13:971044. doi: 10.3389/fpsyg.2022.971044. eCollection 2022.
5
10

引用本文的文献

3
Patient information needs for transparent and trustworthy cardiovascular artificial intelligence: A qualitative study.
PLOS Digit Health. 2025 Apr 21;4(4):e0000826. doi: 10.1371/journal.pdig.0000826. eCollection 2025 Apr.
4
Primary Care Provider Preferences Regarding Artificial Intelligence in Point-of-Care Cancer Screening.
MDM Policy Pract. 2025 Apr 4;10(1):23814683251329007. doi: 10.1177/23814683251329007. eCollection 2025 Jan-Jun.
5
Artificial intelligence applied to the study of human milk and breastfeeding: a scoping review.
Int Breastfeed J. 2024 Dec 6;19(1):79. doi: 10.1186/s13006-024-00686-1.
7
Benefit-Risk Assessment of ChatGPT Applications in the Field of Diabetes and Metabolic Illnesses: A Qualitative Study.
Clin Med Insights Endocrinol Diabetes. 2024 Mar 15;17:11795514241235514. doi: 10.1177/11795514241235514. eCollection 2024.

本文引用的文献

2
Artificial Intelligence in Current Diabetes Management and Prediction.
Curr Diab Rep. 2021 Dec 13;21(12):61. doi: 10.1007/s11892-021-01423-2.
6
Enhancing trust in AI through industry self-governance.
J Am Med Inform Assoc. 2021 Jul 14;28(7):1582-1590. doi: 10.1093/jamia/ocab065.
7
Factors Affecting the Initial Engagement of Older Adults in the Use of Interactive Technology.
Int J Environ Res Public Health. 2021 Mar 11;18(6):2847. doi: 10.3390/ijerph18062847.
8
Are we ready for artificial intelligence health monitoring in elder care?
BMC Geriatr. 2020 Sep 21;20(1):358. doi: 10.1186/s12877-020-01764-9.
9
Current Challenges and Barriers to Real-World Artificial Intelligence Adoption for the Healthcare System, Provider, and the Patient.
Transl Vis Sci Technol. 2020 Aug 11;9(2):45. doi: 10.1167/tvst.9.2.45. eCollection 2020 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验