Suppr超能文献

主动脉瘤诊断的新方向:生物标志物与机器学习

New Directions in Diagnostics for Aortic Aneurysms: Biomarkers and Machine Learning.

作者信息

Alexander Kyle C, Ikonomidis John S, Akerman Adam W

机构信息

Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

J Clin Med. 2024 Jan 31;13(3):818. doi: 10.3390/jcm13030818.

Abstract

This review article presents an appraisal of pioneering technologies poised to revolutionize the diagnosis and management of aortic aneurysm disease, with a primary focus on the thoracic aorta while encompassing insights into abdominal manifestations. Our comprehensive analysis is rooted in an exhaustive survey of contemporary and historical research, delving into the realms of machine learning (ML) and computer-assisted diagnostics. This overview draws heavily upon relevant studies, including Siemens' published field report and many peer-reviewed publications. At the core of our survey lies an in-depth examination of ML-driven diagnostic advancements, dissecting an array of algorithmic suites to unveil the foundational concepts anchoring computer-assisted diagnostics and medical image processing. Our review extends to a discussion of circulating biomarkers, synthesizing insights gleaned from our prior research endeavors alongside contemporary studies gathered from the PubMed Central database. We elucidate the prevalent challenges and envisage the potential fusion of AI-guided aortic measurements and sophisticated ML frameworks with the computational analyses of pertinent biomarkers. By framing current scientific insights, we contemplate the transformative prospect of translating fundamental research into practical diagnostic tools. This narrative not only illuminates present strides, but also forecasts promising trajectories in the clinical evaluation and therapeutic management of aortic aneurysm disease.

摘要

这篇综述文章对有望彻底改变主动脉瘤疾病诊断和管理的前沿技术进行了评估,主要关注胸主动脉,同时也涵盖了对腹部表现的见解。我们的全面分析基于对当代和历史研究的详尽调查,深入探讨机器学习(ML)和计算机辅助诊断领域。本综述大量借鉴了相关研究,包括西门子发表的实地报告以及许多同行评审的出版物。我们调查的核心是对ML驱动的诊断进展进行深入研究,剖析一系列算法套件,以揭示支撑计算机辅助诊断和医学图像处理的基础概念。我们的综述还延伸至对循环生物标志物的讨论,综合我们先前研究工作中获得的见解以及从PubMed Central数据库收集的当代研究成果。我们阐明了普遍存在的挑战,并设想了人工智能引导的主动脉测量和复杂的ML框架与相关生物标志物的计算分析的潜在融合。通过梳理当前的科学见解,我们思考将基础研究转化为实用诊断工具的变革性前景。这篇文章不仅阐明了当前的进展,还预测了主动脉瘤疾病临床评估和治疗管理方面的 promising trajectories。 (注:原文中“promising trajectories”直接保留英文,可能是特定术语或笔误,若有更准确含义可进一步完善翻译)

相似文献

1
New Directions in Diagnostics for Aortic Aneurysms: Biomarkers and Machine Learning.
J Clin Med. 2024 Jan 31;13(3):818. doi: 10.3390/jcm13030818.
2
Machine Learning and Omics Analysis in Aortic Aneurysm.
Angiology. 2024 Nov-Dec;75(10):921-927. doi: 10.1177/00033197231206427. Epub 2023 Oct 10.
3
Transforming clinical virology with AI, machine learning and deep learning: a comprehensive review and outlook.
Virusdisease. 2023 Sep;34(3):345-355. doi: 10.1007/s13337-023-00841-y. Epub 2023 Sep 21.
4
Artificial intelligence in abdominal aortic aneurysm.
J Vasc Surg. 2020 Jul;72(1):321-333.e1. doi: 10.1016/j.jvs.2019.12.026. Epub 2020 Feb 21.
5
Computational surgery in the management of patients with abdominal aortic aneurysms: Opportunities, challenges, and future directions.
Semin Vasc Surg. 2024 Sep;37(3):298-305. doi: 10.1053/j.semvascsurg.2024.07.005. Epub 2024 Aug 6.
7
Brucella-infected abdominal aortic aneurysm: management strategies for an uncommon aneurysm.
Front Med (Lausanne). 2023 Nov 2;10:1271217. doi: 10.3389/fmed.2023.1271217. eCollection 2023.
8
Deep learning for image analysis: Personalizing medicine closer to the point of care.
Crit Rev Clin Lab Sci. 2019 Jan;56(1):61-73. doi: 10.1080/10408363.2018.1536111. Epub 2019 Jan 10.
9
Harmonizing minds and machines: survey on transformative power of machine learning in music.
Front Neurorobot. 2023 Nov 10;17:1267561. doi: 10.3389/fnbot.2023.1267561. eCollection 2023.
10
The role of large language models in medical image processing: a narrative review.
Quant Imaging Med Surg. 2024 Jan 3;14(1):1108-1121. doi: 10.21037/qims-23-892. Epub 2023 Nov 23.

本文引用的文献

1
Plasma microrna quantification protocol.
Vessel Plus. 2023;7. doi: 10.20517/2574-1209.2023.69. Epub 2023 Nov 15.
2
A standardized method for plasma extracellular vesicle isolation and size distribution analysis.
PLoS One. 2023 Apr 28;18(4):e0284875. doi: 10.1371/journal.pone.0284875. eCollection 2023.
3
Comparative analysis of thoracic and abdominal aortic aneurysms across the segment and species at the single-cell level.
Front Pharmacol. 2023 Jan 10;13:1095757. doi: 10.3389/fphar.2022.1095757. eCollection 2022.
4
Performance of a deep learning tool to detect missed aortic dilatation in a large chest CT cohort.
Front Cardiovasc Med. 2022 Aug 22;9:972512. doi: 10.3389/fcvm.2022.972512. eCollection 2022.
6
Impact of Artificial Intelligence Assistance on Chest CT Interpretation Times: A Prospective Randomized Study.
AJR Am J Roentgenol. 2022 Nov;219(5):743-751. doi: 10.2214/AJR.22.27598. Epub 2022 Jun 15.
7
Circulating Biomarkers for the Prediction of Abdominal Aortic Aneurysm Growth.
J Clin Med. 2021 Apr 16;10(8):1718. doi: 10.3390/jcm10081718.
8
Challenges of applying circulating biomarkers for abdominal aortic aneurysm progression.
Exp Biol Med (Maywood). 2021 May;246(9):1054-1059. doi: 10.1177/1535370221992530. Epub 2021 Feb 27.
9
Artificial intelligence assistance improves reporting efficiency of thoracic aortic aneurysm CT follow-up.
Eur J Radiol. 2021 Jan;134:109424. doi: 10.1016/j.ejrad.2020.109424. Epub 2020 Nov 21.
10
Ruptured Aortic Aneurysm and Dissection Related Death: an Autopsy Database Analysis.
Pathol Oncol Res. 2020 Oct;26(4):2391-2399. doi: 10.1007/s12253-020-00835-x. Epub 2020 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验