Suppr超能文献

一种用于预测基因表达和环境组合变化下生长速率的连续上位性模型。

A continuous epistasis model for predicting growth rate given combinatorial variation in gene expression and environment.

作者信息

Otto Ryan M, Turska-Nowak Agata, Brown Philip M, Reynolds Kimberly A

机构信息

Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75230, USA.

Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75230, USA.

出版信息

Cell Syst. 2024 Feb 21;15(2):134-148.e7. doi: 10.1016/j.cels.2024.01.003. Epub 2024 Feb 9.

Abstract

Quantifying and predicting growth rate phenotype given variation in gene expression and environment is complicated by epistatic interactions and the vast combinatorial space of possible perturbations. We developed an approach for mapping expression-growth rate landscapes that integrates sparsely sampled experimental measurements with an interpretable machine learning model. We used mismatch CRISPRi across pairs and triples of genes to create over 8,000 titrated changes in E. coli gene expression under varied environmental contexts, exploring epistasis in up to 22 distinct environments. Our results show that a pairwise model previously used to describe drug interactions well-described these data. The model yielded interpretable parameters related to pathway architecture and generalized to predict the combined effect of up to four perturbations when trained solely on pairwise perturbation data. We anticipate this approach will be broadly applicable in optimizing bacterial growth conditions, generating pharmacogenomic models, and understanding the fundamental constraints on bacterial gene expression. A record of this paper's transparent peer review process is included in the supplemental information.

摘要

鉴于基因表达和环境的变化,由于上位性相互作用以及可能扰动的巨大组合空间,对生长率表型进行量化和预测变得很复杂。我们开发了一种绘制表达-生长率景观的方法,该方法将稀疏采样的实验测量与可解释的机器学习模型相结合。我们使用跨基因对和三联体的错配CRISPRi在不同环境背景下在大肠杆菌基因表达中产生了超过8000种滴定变化,探索了多达22种不同环境中的上位性。我们的结果表明,先前用于描述药物相互作用的成对模型很好地描述了这些数据。该模型产生了与通路结构相关的可解释参数,并且在仅基于成对扰动数据进行训练时能够推广以预测多达四种扰动的联合效应。我们预计这种方法将广泛应用于优化细菌生长条件、生成药物基因组学模型以及理解对细菌基因表达的基本限制。本文透明同行评审过程的记录包含在补充信息中。

相似文献

1
A continuous epistasis model for predicting growth rate given combinatorial variation in gene expression and environment.
Cell Syst. 2024 Feb 21;15(2):134-148.e7. doi: 10.1016/j.cels.2024.01.003. Epub 2024 Feb 9.
2
Analysis of epistatic interactions and fitness landscapes using a new geometric approach.
BMC Evol Biol. 2007 Apr 13;7:60. doi: 10.1186/1471-2148-7-60.
3
Learning epistatic gene interactions from perturbation screens.
PLoS One. 2021 Jul 13;16(7):e0254491. doi: 10.1371/journal.pone.0254491. eCollection 2021.
4
Epistasis decreases with increasing antibiotic pressure but not temperature.
Philos Trans R Soc Lond B Biol Sci. 2023 May 22;378(1877):20220058. doi: 10.1098/rstb.2022.0058. Epub 2023 Apr 3.
5
Epistatic interactions among metabolic genes depend upon environmental conditions.
Mol Biosyst. 2014 Oct;10(10):2578-89. doi: 10.1039/c4mb00181h.
7
Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene.
Mol Biol Evol. 2013 Aug;30(8):1779-87. doi: 10.1093/molbev/mst096. Epub 2013 May 15.
8
Functional regression method for whole genome eQTL epistasis analysis with sequencing data.
BMC Genomics. 2017 May 18;18(1):385. doi: 10.1186/s12864-017-3777-4.
9
Genotype to phenotype mapping and the fitness landscape of the E. coli lac promoter.
PLoS One. 2013 May 1;8(5):e61570. doi: 10.1371/journal.pone.0061570. Print 2013.

引用本文的文献

1
Considering Metabolic Context in Enzyme Evolution and Design.
Biochemistry. 2025 Aug 19;64(16):3495-3507. doi: 10.1021/acs.biochem.5c00165. Epub 2025 Aug 5.
2
The rise and future of CRISPR-based approaches for high-throughput genomics.
FEMS Microbiol Rev. 2024 Sep 18;48(5). doi: 10.1093/femsre/fuae020.
4
CRISPRi functional genomics in bacteria and its application to medical and industrial research.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0017022. doi: 10.1128/mmbr.00170-22. Epub 2024 May 29.

本文引用的文献

1
A dose-response model for statistical analysis of chemical genetic interactions in CRISPRi screens.
PLoS Comput Biol. 2024 May 20;20(5):e1011408. doi: 10.1371/journal.pcbi.1011408. eCollection 2024 May.
2
Essential gene knockdowns reveal genetic vulnerabilities and antibiotic sensitivities in .
mBio. 2024 Feb 14;15(2):e0205123. doi: 10.1128/mbio.02051-23. Epub 2023 Dec 21.
3
SynBa: improved estimation of drug combination synergies with uncertainty quantification.
Bioinformatics. 2023 Jun 30;39(39 Suppl 1):i121-i130. doi: 10.1093/bioinformatics/btad240.
4
Predicting cellular responses to complex perturbations in high-throughput screens.
Mol Syst Biol. 2023 Jun 12;19(6):e11517. doi: 10.15252/msb.202211517. Epub 2023 May 8.
5
6
Gradients in gene essentiality reshape antibacterial research.
FEMS Microbiol Rev. 2022 May 6;46(3). doi: 10.1093/femsre/fuac005.
7
Ceragenins and Antimicrobial Peptides Kill Bacteria through Distinct Mechanisms.
mBio. 2022 Feb 22;13(1):e0272621. doi: 10.1128/mbio.02726-21. Epub 2022 Jan 25.
8
Morphological and Transcriptional Responses to CRISPRi Knockdown of Essential Genes in Escherichia coli.
mBio. 2021 Oct 26;12(5):e0256121. doi: 10.1128/mBio.02561-21. Epub 2021 Oct 12.
9
Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis.
Cell Syst. 2021 Nov 17;12(11):1046-1063.e7. doi: 10.1016/j.cels.2021.08.004. Epub 2021 Aug 31.
10
Quantitative Control for Stoichiometric Protein Synthesis.
Annu Rev Microbiol. 2021 Oct 8;75:243-267. doi: 10.1146/annurev-micro-041921-012646. Epub 2021 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验