Suppr超能文献

细菌中的 CRISPRi 功能基因组学及其在医学和工业研究中的应用。

CRISPRi functional genomics in bacteria and its application to medical and industrial research.

机构信息

Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0017022. doi: 10.1128/mmbr.00170-22. Epub 2024 May 29.

Abstract

SUMMARYFunctional genomics is the use of systematic gene perturbation approaches to determine the contributions of genes under conditions of interest. Although functional genomic strategies have been used in bacteria for decades, recent studies have taken advantage of CRISPR (clustered regularly interspaced short palindromic repeats) technologies, such as CRISPRi (CRISPR interference), that are capable of precisely modulating expression of all genes in the genome. Here, we discuss and review the use of CRISPRi and related technologies for bacterial functional genomics. We discuss the strengths and weaknesses of CRISPRi as well as design considerations for CRISPRi genetic screens. We also review examples of how CRISPRi screens have defined relevant genetic targets for medical and industrial applications. Finally, we outline a few of the many possible directions that could be pursued using CRISPR-based functional genomics in bacteria. Our view is that the most exciting screens and discoveries are yet to come.

摘要

摘要功能基因组学是利用系统的基因干扰方法来确定在感兴趣的条件下基因的贡献。尽管功能基因组学策略在细菌中已经使用了几十年,但最近的研究利用了 CRISPR(成簇规律间隔短回文重复)技术,如 CRISPRi(CRISPR 干扰),能够精确地调节基因组中所有基因的表达。在这里,我们讨论和回顾了 CRISPRi 和相关技术在细菌功能基因组学中的应用。我们讨论了 CRISPRi 的优缺点以及 CRISPRi 遗传筛选的设计考虑因素。我们还回顾了 CRISPRi 筛选如何为医疗和工业应用定义相关遗传靶标的例子。最后,我们概述了使用基于 CRISPR 的功能基因组学在细菌中可能追求的许多方向。我们的观点是,最令人兴奋的筛选和发现还在后面。

相似文献

1
CRISPRi functional genomics in bacteria and its application to medical and industrial research.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0017022. doi: 10.1128/mmbr.00170-22. Epub 2024 May 29.
2
The rise and future of CRISPR-based approaches for high-throughput genomics.
FEMS Microbiol Rev. 2024 Sep 18;48(5). doi: 10.1093/femsre/fuae020.
3
Bacterial CRISPR screens for gene function.
Curr Opin Microbiol. 2021 Feb;59:102-109. doi: 10.1016/j.mib.2020.11.005. Epub 2020 Dec 4.
4
Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
Int J Mol Sci. 2018 Apr 5;19(4):1089. doi: 10.3390/ijms19041089.
5
Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi.
Curr Protoc Microbiol. 2020 Dec;59(1):e130. doi: 10.1002/cpmc.130.
6
CRISPR technologies for bacterial systems: Current achievements and future directions.
Biotechnol Adv. 2016 Nov 15;34(7):1180-1209. doi: 10.1016/j.biotechadv.2016.08.002. Epub 2016 Aug 24.
7
History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology.
J Bacteriol. 2018 Mar 12;200(7). doi: 10.1128/JB.00580-17. Print 2018 Apr 1.
8
Development and application of CRISPR/Cas9 technologies in genomic editing.
Hum Mol Genet. 2018 Aug 1;27(R2):R79-R88. doi: 10.1093/hmg/ddy120.
9
Application of CRISPR genetic screens to investigate neurological diseases.
Mol Neurodegener. 2019 Nov 14;14(1):41. doi: 10.1186/s13024-019-0343-3.

引用本文的文献

2
An exciting future for microbial molecular biology and physiology.
mBio. 2025 Aug 13;16(8):e0069425. doi: 10.1128/mbio.00694-25. Epub 2025 Jun 30.
4
DNA Polymerase IV dinB Favors the Adaptive Fitness of mcr-carrying Bacteria Through a Negative Feedback Regulatory Mechanism.
Adv Sci (Weinh). 2025 Mar;12(12):e2411994. doi: 10.1002/advs.202411994. Epub 2025 Jan 31.
5
Targeting Transcriptional Regulators Affecting Acarbose Biosynthesis in sp. SE50/110 Using CRISPRi Silencing.
Microorganisms. 2024 Dec 24;13(1):1. doi: 10.3390/microorganisms13010001.
6
High-throughput protein characterization by complementation using DNA barcoded fragment libraries.
Mol Syst Biol. 2024 Nov;20(11):1207-1229. doi: 10.1038/s44320-024-00068-z. Epub 2024 Oct 7.

本文引用的文献

1
A continuous epistasis model for predicting growth rate given combinatorial variation in gene expression and environment.
Cell Syst. 2024 Feb 21;15(2):134-148.e7. doi: 10.1016/j.cels.2024.01.003. Epub 2024 Feb 9.
2
Rewiring Metabolic Flux in Using a CRISPR/dCpf1-Based Bifunctional Regulation System.
J Agric Food Chem. 2024 Feb 14;72(6):3077-3087. doi: 10.1021/acs.jafc.3c08529. Epub 2024 Feb 1.
3
Beyond antibiotic resistance: The whiB7 transcription factor coordinates an adaptive response to alanine starvation in mycobacteria.
Cell Chem Biol. 2024 Apr 18;31(4):669-682.e7. doi: 10.1016/j.chembiol.2023.12.020. Epub 2024 Jan 23.
4
Essential gene knockdowns reveal genetic vulnerabilities and antibiotic sensitivities in .
mBio. 2024 Feb 14;15(2):e0205123. doi: 10.1128/mbio.02051-23. Epub 2023 Dec 21.
5
The genetics of aerotolerant growth in an alphaproteobacterium with a naturally reduced genome.
mBio. 2023 Dec 19;14(6):e0148723. doi: 10.1128/mbio.01487-23. Epub 2023 Oct 31.
6
Unlocking the potential of microbiome editing: A review of conjugation-based delivery.
Mol Microbiol. 2024 Sep;122(3):273-283. doi: 10.1111/mmi.15147. Epub 2023 Sep 2.
8
CRISPR-Associated Transposase for Targeted Mutagenesis in Diverse Proteobacteria.
ACS Synth Biol. 2023 Jul 21;12(7):1989-2003. doi: 10.1021/acssynbio.3c00065. Epub 2023 Jun 27.
9
Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii.
Nat Chem Biol. 2023 Nov;19(11):1342-1350. doi: 10.1038/s41589-023-01349-8. Epub 2023 May 25.
10
High-content CRISPR screening.
Nat Rev Methods Primers. 2022;2(1). doi: 10.1038/s43586-022-00098-7. Epub 2022 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验