Suppr超能文献

解析玉米的时间生长模式:表型动态及其潜在基因组变异的综合建模。

Deciphering temporal growth patterns in maize: integrative modeling of phenotype dynamics and underlying genomic variations.

机构信息

Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA.

USDA-ARS, 302-A Curtis Hall, Columbia, MO, 65211, USA.

出版信息

New Phytol. 2024 Apr;242(1):121-136. doi: 10.1111/nph.19575. Epub 2024 Feb 13.

Abstract

Quantifying the temporal or longitudinal growth dynamics of crops in diverse environmental conditions is crucial for understanding plant development, requiring further modeling techniques. In this study, we analyzed the growth patterns of two different maize (Zea mays L.) populations using high-throughput phenotyping with a maize population consisting of 515 recombinant inbred lines (RILs) grown in Texas and a hybrid population containing 1090 hybrids grown in Missouri. Two models, Gaussian peak and functional principal component analysis (FPCA), were employed to study the Normalized Green-Red Difference Index (NGRDI) scores. The Gaussian peak model showed strong correlations (c. 0.94 for RILs and c. 0.97 for hybrids) between modeled and non-modeled temporal trajectories. Functional principal component analysis differentiated NGRDI trajectories in RILs under different conditions, capturing substantial variability (75%, 20%, and 5% for RILs; 88% and 12% for hybrids). By comparing these models with conventional BLUP values, common quantitative trait loci (QTLs) were identified, containing candidate genes of brd1, pin11, zcn8 and rap2. The harmony between these loci's additive effects and growing degree days, as well as the differentiation of RIL haplotypes across growth stages, underscores the significant interplay of these loci in driving plant development. These findings contribute to advancing understanding of plant-environment interactions and have implications for crop improvement strategies.

摘要

量化不同环境条件下作物的时间或纵向生长动态对于理解植物发育至关重要,需要进一步的建模技术。在这项研究中,我们使用高通量表型分析分析了两个不同玉米(Zea mays L.)群体的生长模式,其中一个群体由在德克萨斯州生长的 515 个重组自交系(RILs)组成,另一个群体由在密苏里州生长的 1090 个杂交种组成。我们使用了高斯峰和功能主成分分析(FPCA)两种模型来研究归一化绿红差指数(NGRDI)评分。高斯峰模型显示了模型化和非模型化时间轨迹之间的强相关性(RILs 的相关性约为 0.94,杂交种的相关性约为 0.97)。功能主成分分析区分了不同条件下 RILs 的 NGRDI 轨迹,捕获了大量的可变性(RILs 的可变性为 75%、20%和 5%;杂交种的可变性为 88%和 12%)。通过将这些模型与常规 BLUP 值进行比较,确定了常见的数量性状基因座(QTL),其中包含 brd1、pin11、zcn8 和 rap2 的候选基因。这些基因座的加性效应与生长度日之间的和谐以及 RIL 单倍型在不同生长阶段的分化,突出了这些基因座在驱动植物发育中的重要相互作用。这些发现有助于提高对植物-环境相互作用的理解,并对作物改良策略具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验