Suppr超能文献

着丝粒失活诱导染色体特异性微核和染色体碎裂

Induction of chromosome-specific micronuclei and chromothripsis by centromere inactivation.

作者信息

Lin Yu-Fen, Hu Qing, Guyer Alison, Fachinetti Daniele, Ly Peter

机构信息

Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States.

Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.

出版信息

Methods Cell Biol. 2024;182:1-20. doi: 10.1016/bs.mcb.2022.10.009. Epub 2022 Nov 28.

Abstract

Chromothripsis describes the catastrophic fragmentation of individual chromosomes followed by its haphazard reassembly into a derivative chromosome harboring complex rearrangements. This process can be initiated by mitotic cell division errors when one or more chromosomes aberrantly mis-segregate into micronuclei and acquire extensive DNA damage. Approaches to induce the formation of micronuclei encapsulating random chromosomes have been used; however, the eventual reincorporation of the micronucleated chromosome into daughter cell nuclei poses a challenge in tracking the chromosome for multiple cell cycles. Here we outline an approach to genetically engineer stable human cell lines capable of efficient chromosome-specific micronuclei induction. This strategy, which targets the CENP-B-deficient Y chromosome centromere for inactivation, allows the stepwise process of chromothripsis to be experimentally recapitulated, including the mechanisms and timing of chromosome fragmentation. Lastly, we describe the integration of a selection marker onto the micronucleated Y chromosome that enables the diverse genomic rearrangement landscape arising from micronuclei formation to be interrogated.

摘要

染色体碎裂描述了单个染色体的灾难性断裂,随后其被随机重新组装成具有复杂重排的衍生染色体。当一个或多个染色体异常错误分离到微核中并受到广泛的DNA损伤时,有丝分裂细胞分裂错误可引发这一过程。已采用诱导包裹随机染色体的微核形成的方法;然而,微核化染色体最终重新整合到子细胞核中,这在多个细胞周期追踪该染色体方面构成了挑战。在此,我们概述了一种对稳定的人类细胞系进行基因工程改造的方法,使其能够高效诱导特定染色体的微核形成。该策略靶向CENP-B缺陷的Y染色体着丝粒使其失活,能够在实验中重现染色体碎裂的逐步过程,包括染色体断裂的机制和时间。最后,我们描述了在微核化的Y染色体上整合一个选择标记,这使得能够对由微核形成产生的多样基因组重排情况进行研究。

相似文献

1
Induction of chromosome-specific micronuclei and chromothripsis by centromere inactivation.
Methods Cell Biol. 2024;182:1-20. doi: 10.1016/bs.mcb.2022.10.009. Epub 2022 Nov 28.
3
Mitotic clustering of pulverized chromosomes from micronuclei.
Nature. 2023 Jun;618(7967):1041-1048. doi: 10.1038/s41586-023-05974-0. Epub 2023 May 10.
4
Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis.
Trends Cell Biol. 2017 Dec;27(12):917-930. doi: 10.1016/j.tcb.2017.08.005. Epub 2017 Sep 9.
5
Mitotic tethering enables inheritance of shattered micronuclear chromosomes.
Nature. 2023 Jun;618(7967):1049-1056. doi: 10.1038/s41586-023-06216-z. Epub 2023 Jun 14.
7
9
Interrogating cell division errors using random and chromosome-specific missegregation approaches.
Cell Cycle. 2017 Jul 3;16(13):1252-1258. doi: 10.1080/15384101.2017.1325047. Epub 2017 Jun 26.
10
Chromothripsis from DNA damage in micronuclei.
Nature. 2015 Jun 11;522(7555):179-84. doi: 10.1038/nature14493. Epub 2015 May 27.

引用本文的文献

2
Origin and Fate of Micronuclei on the Road to Chromoanagenesis.
Methods Mol Biol. 2025;2968:361-372. doi: 10.1007/978-1-0716-4750-9_21.
3
A p62-dependent rheostat dictates micronuclei catastrophe and chromosome rearrangements.
Science. 2024 Aug 30;385(6712):eadj7446. doi: 10.1126/science.adj7446.
4
The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance.
Cell. 2024 Oct 17;187(21):6055-6070.e22. doi: 10.1016/j.cell.2024.08.001. Epub 2024 Aug 23.
6
Mitotic clustering of pulverized chromosomes from micronuclei.
Nature. 2023 Jun;618(7967):1041-1048. doi: 10.1038/s41586-023-05974-0. Epub 2023 May 10.

本文引用的文献

1
Generation of auxin inducible degron (AID) knock-in cell lines for targeted protein degradation in mammalian cells.
STAR Protoc. 2021 Nov 19;2(4):100949. doi: 10.1016/j.xpro.2021.100949. eCollection 2021 Dec 17.
2
Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing.
Nat Genet. 2021 Jun;53(6):895-905. doi: 10.1038/s41588-021-00838-7. Epub 2021 Apr 12.
3
Chromothripsis drives the evolution of gene amplification in cancer.
Nature. 2021 Mar;591(7848):137-141. doi: 10.1038/s41586-020-03064-z. Epub 2020 Dec 23.
4
The landscape of chromothripsis across adult cancer types.
Nat Commun. 2020 May 8;11(1):2320. doi: 10.1038/s41467-020-16134-7.
5
Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing.
Nat Genet. 2020 Mar;52(3):331-341. doi: 10.1038/s41588-019-0576-7. Epub 2020 Feb 5.
7
Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements.
Nat Genet. 2019 Apr;51(4):705-715. doi: 10.1038/s41588-019-0360-8. Epub 2019 Mar 4.
8
Nuclear envelope assembly defects link mitotic errors to chromothripsis.
Nature. 2018 Sep;561(7724):551-555. doi: 10.1038/s41586-018-0534-z. Epub 2018 Sep 19.
10
Interrogating cell division errors using random and chromosome-specific missegregation approaches.
Cell Cycle. 2017 Jul 3;16(13):1252-1258. doi: 10.1080/15384101.2017.1325047. Epub 2017 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验