Suppr超能文献

蛋白质组规模上的表型突变的适应性效应揭示了翻译机制的最优性。

Fitness Effects of Phenotypic Mutations at Proteome-Scale Reveal Optimality of Translation Machinery.

机构信息

Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.

Center for Systems Biology Dresden, 01307 Dresden, Germany.

出版信息

Mol Biol Evol. 2024 Mar 1;41(3). doi: 10.1093/molbev/msae048.

Abstract

Errors in protein translation can lead to non-genetic, phenotypic mutations, including amino acid misincorporations. While phenotypic mutations can increase protein diversity, the systematic characterization of their proteome-wide frequencies and their evolutionary impact has been lacking. Here, we developed a mechanistic model of translation errors to investigate how selection acts on protein populations produced by amino acid misincorporations. We fitted the model to empirical observations of misincorporations obtained from over a hundred mass spectrometry datasets of E. coli and S. cerevisiae. We found that on average 20% to 23% of proteins synthesized in the cell are expected to harbor at least one amino acid misincorporation, and that deleterious misincorporations are less likely to occur. Combining misincorporation probabilities and the estimated fitness effects of amino acid substitutions in a population genetics framework, we found 74% of mistranslation events in E. coli and 94% in S. cerevisiae to be neutral. We further show that the set of available synonymous tRNAs is subject to evolutionary pressure, as the presence of missing tRNAs would increase codon-anticodon cross-reactivity and misincorporation error rates. Overall, we find that the translation machinery is likely optimal in E. coli and S. cerevisiae and that both local solutions at the level of codons and a global solution such as the tRNA pool can mitigate the impact of translation errors. We provide a framework to study the evolutionary impact of codon-specific translation errors and a method for their proteome-wide detection across organisms and conditions.

摘要

蛋白质翻译中的错误会导致非遗传性表型突变,包括氨基酸错参。虽然表型突变可以增加蛋白质的多样性,但对其在蛋白质组范围内的频率及其进化影响的系统特征化仍缺乏研究。在这里,我们开发了一个翻译错误的力学模型,以研究选择如何作用于由氨基酸错参产生的蛋白质群体。我们将该模型拟合到从超过一百个大肠杆菌和酿酒酵母的质谱数据集获得的错参观测值。我们发现,细胞中合成的蛋白质平均有 20%到 23%预计会带有至少一个氨基酸错参,而且有害的错参不太可能发生。在群体遗传学框架中结合错参概率和氨基酸取代的估计适应度效应,我们发现大肠杆菌中 74%和酿酒酵母中 94%的错译事件是中性的。我们进一步表明,可用的同义 tRNA 集受到进化压力的影响,因为缺失 tRNA 的存在会增加密码子-反密码子交叉反应和错参错误率。总的来说,我们发现大肠杆菌和酿酒酵母中的翻译机制可能是最优的,并且在密码子水平的局部解决方案和 tRNA 池等全局解决方案都可以减轻翻译错误的影响。我们提供了一个研究特定密码子翻译错误的进化影响的框架,并提供了一种在不同生物体和条件下检测蛋白质组范围内错参的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65f2/10939442/b2ba3dc414ba/msae048f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验