Suppr超能文献

从组学到临床组学在实体瘤中的进展:成功案例与挑战。

A journey from omics to clinicomics in solid cancers: Success stories and challenges.

机构信息

Guru Nanak Dev University, Amritsar, Punjab, India.

Guru Nanak Dev University, Amritsar, Punjab, India.

出版信息

Adv Protein Chem Struct Biol. 2024;139:89-139. doi: 10.1016/bs.apcsb.2023.11.008. Epub 2024 Feb 21.

Abstract

The word 'cancer' encompasses a heterogenous group of distinct disease types characterized by a spectrum of pathological features, genetic alterations and response to therapies. According to the World Health Organization, cancer is the second leading cause of death worldwide, responsible for one in six deaths and hence imposes a significant burden on global healthcare systems. High-throughput omics technologies combined with advanced imaging tools, have revolutionized our ability to interrogate the molecular landscape of tumors and has provided unprecedented understanding of the disease. Yet, there is a gap between basic research discoveries and their translation into clinically meaningful therapies for improving patient care. To bridge this gap, there is a need to analyse the vast amounts of high dimensional datasets from multi-omics platforms. The integration of multi-omics data with clinical information like patient history, histological examination and imaging has led to the novel concept of clinicomics and may expedite the bench-to-bedside transition in cancer. The journey from omics to clinicomics has gained momentum with development of radiomics which involves extracting quantitative features from medical imaging data with the help of deep learning and artificial intelligence (AI) tools. These features capture detailed information about the tumor's shape, texture, intensity, and spatial distribution. Together, the related fields of multiomics, translational bioinformatics, radiomics and clinicomics may provide evidence-based recommendations tailored to the individual cancer patient's molecular profile and clinical characteristics. In this chapter, we summarize multiomics studies in solid cancers with a specific focus on breast cancer. We also review machine learning and AI based algorithms and their use in cancer diagnosis, subtyping, prognosis and predicting treatment resistance and relapse.

摘要

“癌症”一词涵盖了一组不同的疾病类型,这些疾病具有不同的病理特征、遗传改变和对治疗的反应。根据世界卫生组织的数据,癌症是全球第二大死亡原因,占全球死亡人数的六分之一,因此对全球医疗保健系统造成了重大负担。高通量组学技术与先进的成像工具相结合,彻底改变了我们对肿瘤分子图谱进行研究的能力,使我们对该疾病有了前所未有的了解。然而,基础研究发现与转化为改善患者治疗效果的临床相关疗法之间存在差距。为了弥合这一差距,需要分析来自多组学平台的大量高维数据集。多组学数据与患者病史、组织学检查和影像学等临床信息的整合催生了临床组学的新概念,并可能加速癌症从基础研究到临床应用的转化。随着放射组学的发展,从组学到临床组学的旅程取得了进展,放射组学涉及借助深度学习和人工智能 (AI) 工具从医学成像数据中提取定量特征。这些特征捕捉了有关肿瘤形状、纹理、强度和空间分布的详细信息。多组学、转化生物信息学、放射组学和临床组学等相关领域可能会提供基于证据的建议,这些建议针对的是个体癌症患者的分子谱和临床特征。在本章中,我们总结了实体瘤的多组学研究,特别关注乳腺癌。我们还回顾了基于机器学习和人工智能的算法及其在癌症诊断、分型、预后以及预测治疗耐药性和复发方面的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验