Suppr超能文献

迈向用于食管癌肿瘤异质性多组学表征的人工智能

Towards artificial intelligence to multi-omics characterization of tumor heterogeneity in esophageal cancer.

作者信息

Li Junyu, Li Lin, You Peimeng, Wei Yiping, Xu Bin

机构信息

Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China; Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China.

Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China.

出版信息

Semin Cancer Biol. 2023 Jun;91:35-49. doi: 10.1016/j.semcancer.2023.02.009. Epub 2023 Mar 1.

Abstract

Esophageal cancer is a unique and complex heterogeneous malignancy, with substantial tumor heterogeneity: at the cellular levels, tumors are composed of tumor and stromal cellular components; at the genetic levels, they comprise genetically distinct tumor clones; at the phenotypic levels, cells in distinct microenvironmental niches acquire diverse phenotypic features. This heterogeneity affects almost every process of esophageal cancer progression from onset to metastases and recurrence, etc. Intertumoral and intratumoral heterogeneity are major obstacles in the treatment of esophageal cancer, but also offer the potential to manipulate the heterogeneity themselves as a new therapeutic strategy. The high-dimensional, multi-faceted characterization of genomics, epigenomics, transcriptomics, proteomics, metabonomics, etc. of esophageal cancer has opened novel horizons for dissecting tumor heterogeneity. Artificial intelligence especially machine learning and deep learning algorithms, are able to make decisive interpretations of data from multi-omics layers. To date, artificial intelligence has emerged as a promising computational tool for analyzing and dissecting esophageal patient-specific multi-omics data. This review provides a comprehensive review of tumor heterogeneity from a multi-omics perspective. Especially, we discuss the novel techniques single-cell sequencing and spatial transcriptomics, which have revolutionized our understanding of the cell compositions of esophageal cancer and allowed us to determine novel cell types. We focus on the latest advances in artificial intelligence in integrating multi-omics data of esophageal cancer. Artificial intelligence-based multi-omics data integration computational tools exert a key role in tumor heterogeneity assessment, which will potentially boost the development of precision oncology in esophageal cancer.

摘要

食管癌是一种独特而复杂的异质性恶性肿瘤,具有显著的肿瘤异质性:在细胞水平上,肿瘤由肿瘤细胞和基质细胞成分组成;在基因水平上,它们包含基因上不同的肿瘤克隆;在表型水平上,不同微环境龛中的细胞获得不同的表型特征。这种异质性几乎影响食管癌从发病到转移和复发等进展的每一个过程。肿瘤间和肿瘤内异质性是食管癌治疗的主要障碍,但也为将异质性本身作为一种新的治疗策略进行调控提供了潜力。对食管癌的基因组学、表观基因组学、转录组学、蛋白质组学、代谢组学等进行的高维、多方面表征,为剖析肿瘤异质性开辟了新的视野。人工智能尤其是机器学习和深度学习算法,能够对来自多组学层面的数据做出决定性解释。迄今为止,人工智能已成为一种有前途的计算工具,用于分析和剖析食管癌患者特异性多组学数据。本综述从多组学角度对肿瘤异质性进行了全面综述。特别是,我们讨论了单细胞测序和空间转录组学等新技术,这些技术彻底改变了我们对食管癌细胞组成的理解,并使我们能够确定新的细胞类型。我们重点关注人工智能在整合食管癌多组学数据方面的最新进展。基于人工智能的多组学数据整合计算工具在肿瘤异质性评估中发挥着关键作用,这可能会推动食管癌精准肿瘤学的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验