Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States.
Health Research Institute, Michigan Technological University, Houghton, Michigan, United States.
Am J Physiol Heart Circ Physiol. 2024 May 1;326(5):H1180-H1192. doi: 10.1152/ajpheart.00067.2024. Epub 2024 Mar 8.
Endothelial cells (ECs) within the vascular system encounter fluid shear stress (FSS). High, laminar FSS promotes vasodilation and anti-inflammatory responses, whereas low or disturbed FSS induces dysfunction and inflammation. However, the adaptation of endothelial cells (ECs) to dynamically changing FSS patterns remains underexplored. Here, by combining traction force microscopy with a custom flow chamber, we examined human umbilical vein endothelial cells adapting their traction during transitions from short-term low shear to long-term high shear stress. We discovered that the initial low FSS elevates the traction by only half of the amount in response to direct high FSS even after flow changes to high FSS. However, in the long term under high FSS, the flow started with low FSS triggers a substantial second rise in traction for over 10 h. In contrast, the flow started directly with high FSS results in a quick traction surge followed by a huge reduction below the baseline traction in <30 min. Importantly, we find that the orientation of traction vectors is steered by initial shear exposure. Using Granger causality analysis, we show that the traction that aligns in the flow direction under direct high FSS functionally causes cell alignment toward the flow direction. However, EC traction that orients perpendicular to the flow that starts with temporary low FSS functionally causes cell orientation perpendicular to the flow. Taken together, our findings elucidate the significant influence of initial short-term low FSS on lasting changes in endothelial traction that induces EC alignment. In our study, we uncover that preconditioning with low shear stress yields enduring impacts on endothelial cell traction and orientation, persisting even after transitioning to high-shear conditions. Using Granger causality analysis, we demonstrate a functional link between the direction of cell traction and subsequent cellular alignment across varying shear environments.
血管系统中的内皮细胞(ECs)会遇到流体切应力(FSS)。高、层流 FSS 促进血管舒张和抗炎反应,而低或紊乱的 FSS 则会导致功能障碍和炎症。然而,内皮细胞(ECs)对动态变化的 FSS 模式的适应仍未得到充分探索。在这里,我们通过结合牵引力显微镜和定制的流动室,研究了人脐静脉内皮细胞在从短期低切应力过渡到长期高切应力时如何调整其牵引力。我们发现,即使在流量切换到高 FSS 后,初始低 FSS 引起的牵引力仅增加到与直接高 FSS 响应一半的程度。然而,在长期高 FSS 下,低 FSS 起始的流量会引发牵引力的第二次显著增加,持续超过 10 小时。相比之下,直接从高 FSS 开始的流量会导致牵引力迅速增加,然后在不到 30 分钟内迅速降至基线牵引力以下。重要的是,我们发现牵引力矢量的方向是由初始剪切暴露决定的。通过格兰杰因果分析,我们表明在直接高 FSS 下沿流动方向对齐的牵引力会导致细胞向流动方向对齐。然而,从临时低 FSS 开始的垂直于流动方向的 EC 牵引力会导致细胞沿垂直于流动的方向排列。总的来说,我们的研究结果阐明了初始短期低 FSS 对内皮细胞牵引力的持久变化的显著影响,这种变化会诱导 EC 对齐。在我们的研究中,我们发现低切应力预处理对内皮细胞牵引力和方向产生持久影响,即使在过渡到高切条件后也是如此。通过格兰杰因果分析,我们证明了细胞牵引力的方向与不同剪切环境下随后的细胞对齐之间存在功能联系。