Department of Mechanical Engineering, Seoul National University, Seoul, Korea.
Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea.
Nat Mater. 2024 Jul;23(7):984-992. doi: 10.1038/s41563-024-01846-8. Epub 2024 Mar 14.
Unlike proteins, which have a wealth of validated structural data, experimentally or computationally validated DNA origami datasets are limited. Here we present a graph neural network that can predict the three-dimensional conformation of DNA origami assemblies both rapidly and accurately. We develop a hybrid data-driven and physics-informed approach for model training, designed to minimize not only the data-driven loss but also the physics-informed loss. By employing an ensemble strategy, the model can successfully infer the shape of monomeric DNA origami structures almost in real time. Further refinement of the model in an unsupervised manner enables the analysis of supramolecular assemblies consisting of tens to hundreds of DNA blocks. The proposed model enables an automated inverse design of DNA origami structures for given target shapes. Our approach facilitates the real-time virtual prototyping of DNA origami, broadening its design space.
与具有丰富验证结构数据的蛋白质不同,实验或计算验证的 DNA 折纸数据集是有限的。在这里,我们提出了一个图神经网络,它可以快速准确地预测 DNA 折纸结构的三维构象。我们开发了一种混合数据驱动和物理信息的方法来进行模型训练,旨在不仅最小化数据驱动损失,而且最小化物理信息损失。通过采用集成策略,该模型几乎可以实时成功推断单体 DNA 折纸结构的形状。以无监督的方式对模型进行进一步细化,使得能够分析由数十到数百个 DNA 块组成的超分子组装体。所提出的模型可以为给定的目标形状自动设计 DNA 折纸结构。我们的方法促进了 DNA 折纸的实时虚拟原型设计,拓宽了其设计空间。