Suppr超能文献

坐骨神经损伤后的骨骼肌萎缩:机制见解。

Skeletal muscle atrophy after sciatic nerve damage: Mechanistic insights.

机构信息

Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.

Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.

出版信息

Eur J Pharmacol. 2024 May 5;970:176506. doi: 10.1016/j.ejphar.2024.176506. Epub 2024 Mar 15.

Abstract

Sciatic nerve injury leads to molecular events that cause muscular dysfunction advancement in atrophic conditions. Nerve damage renders muscles permanently relaxed which elevates intracellular resting Ca levels. Increased Ca levels are associated with several cellular signaling pathways including AMPK, cGMP, PLC-β, CERB, and calcineurin. Also, multiple enzymes involved in the tricarboxylic acid cycle and oxidative phosphorylation are activated by Ca influx into mitochondria during muscle contraction, to meet increased ATP demand. Nerve damage induces mitophagy and skeletal muscle atrophy through increased sensitivity to Ca-induced opening of the permeability transition pore (PTP) in mitochondria attributed to Ca, ROS, and AMPK overload in muscle. Activated AMPK interacts negatively with Akt/mTOR is a highly prevalent and well-described central pathway for anabolic processes. Over the decade several reports indicate abnormal behavior of signaling machinery involved in denervation-induced muscle loss but end up with some controversial outcomes. Therefore, understanding how the synthesis and inhibitory stimuli interact with cellular signaling to control muscle mass and morphology may lead to new pharmacological insights toward understanding the underlying mechanism of muscle loss after sciatic nerve damage. Hence, the present review summarizes the existing literature on denervation-induced muscle atrophy to evaluate the regulation and expression of differential regulators during sciatic damage.

摘要

坐骨神经损伤导致分子事件,导致肌肉功能障碍在萎缩状态下进展。神经损伤使肌肉永久松弛,从而升高细胞内静息 Ca 水平。升高的 Ca 水平与几种细胞信号通路有关,包括 AMPK、cGMP、PLC-β、CERB 和钙调神经磷酸酶。此外,在肌肉收缩期间,Ca 流入线粒体激活了参与三羧酸循环和氧化磷酸化的多种酶,以满足增加的 ATP 需求。神经损伤通过增加 Ca、ROS 和 AMPK 过载导致线粒体通透性转换孔 (PTP) 对 Ca 诱导的开放的敏感性,诱导自噬和骨骼肌萎缩。激活的 AMPK 与 Akt/mTOR 相互作用呈负相关,这是一种高度普遍且描述良好的合成代谢过程的中心途径。在过去的十年中,有几项报告表明,参与失神经诱导肌肉丧失的信号机制行为异常,但最终得出了一些有争议的结果。因此,了解合成和抑制刺激如何与细胞信号相互作用以控制肌肉质量和形态,可能会为理解坐骨神经损伤后肌肉丧失的潜在机制提供新的药理学见解。因此,本综述总结了失神经诱导肌肉萎缩的现有文献,以评估坐骨神经损伤过程中差异调节剂的调节和表达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验