Zhang Wei, Zhu Yongwei, Liu Hongyi, Zhang Yihao, Liu Hongwei, Adegboro Abraham Ayodeji, Dang Ruiyue, Dai Luohuan, Wanggou Siyi, Li Xuejun
Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
NPJ Precis Oncol. 2024 Mar 27;8(1):77. doi: 10.1038/s41698-024-00570-5.
Regulated cell death (RCD) plays a pivotal role in various biological processes, including development, tissue homeostasis, and immune response. However, a comprehensive assessment of RCD status and its associated features at the pan-cancer level remains unexplored. Furthermore, despite significant advancements in immune checkpoint inhibitors (ICI), only a fraction of cancer patients currently benefit from treatments. Given the emerging evidence linking RCD and ICI efficacy, we hypothesize that the RCD status could serve as a promising biomarker for predicting the ICI response and overall survival (OS) in patients with malignant tumors. We defined the RCD levels as the RCD score, allowing us to delineate the RCD landscape across 30 cancer types, 29 normal tissues in bulk, and 2,573,921 cells from 82 scRNA-Seq datasets. By leveraging large-scale datasets, we aimed to establish the positive association of RCD with immunity and identify the RCD signature. Utilizing 7 machine-learning algorithms and 18 ICI cohorts, we developed an RCD signature (RCD.Sig) for predicting ICI response. Additionally, we employed 101 combinations of 10 machine-learning algorithms to construct a novel RCD survival-related signature (RCD.Sur.Sig) for predicting OS. Furthermore, we obtained CRISPR data to identify potential therapeutic targets. Our study presents an integrative framework for assessing RCD status and reveals a strong connection between RCD status and ICI effectiveness. Moreover, we establish two clinically applicable signatures and identify promising potential therapeutic targets for patients with tumors.
程序性细胞死亡(RCD)在包括发育、组织稳态和免疫反应在内的各种生物学过程中起着关键作用。然而,在泛癌水平上对RCD状态及其相关特征进行全面评估仍未得到探索。此外,尽管免疫检查点抑制剂(ICI)取得了重大进展,但目前只有一小部分癌症患者能从治疗中获益。鉴于越来越多的证据表明RCD与ICI疗效有关,我们假设RCD状态可以作为预测恶性肿瘤患者ICI反应和总生存期(OS)的一个有前景的生物标志物。我们将RCD水平定义为RCD评分,这使我们能够描绘出30种癌症类型、29种正常组织整体以及来自82个单细胞RNA测序(scRNA-Seq)数据集的2573921个细胞中的RCD情况。通过利用大规模数据集,我们旨在建立RCD与免疫的正相关关系并识别RCD特征。利用7种机器学习算法和18个ICI队列,我们开发了一种用于预测ICI反应的RCD特征(RCD.Sig)。此外,我们采用10种机器学习算法的101种组合来构建一种用于预测OS的新型RCD生存相关特征(RCD.Sur.Sig)。此外,我们获得了CRISPR数据以识别潜在的治疗靶点。我们的研究提出了一个评估RCD状态的综合框架,并揭示了RCD状态与ICI有效性之间的紧密联系。此外,我们建立了两种临床适用的特征,并为肿瘤患者识别出有前景的潜在治疗靶点。