Gong Yuxin, Hu Jie, Qiu Canbin, Gong Hegui
Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai 200444, China.
Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China.
Acc Chem Res. 2024 Apr 16;57(8):1149-1162. doi: 10.1021/acs.accounts.3c00810. Epub 2024 Mar 28.
ConspectusTransition metal-catalyzed reductive cross-coupling of two carbon electrophiles, also known as cross-electrophile coupling (XEC), has transformed the landscape of C-C coupling chemistry. Nickel catalysts, in particular, have demonstrated exceptional performance in facilitating XEC reactions, allowing for diverse elegant transformations by employing various electrophiles to forge C-C bonds. Nevertheless, several crucial challenges remain to be addressed. First, the intrinsic chemoselectivity between two structurally similar electrophiles in Ni-catalyzed C(sp)-C(sp) and C(sp)-C(sp) cross-coupling has not been well understood; this necessitates an excess of one of the coupling partners to achieve synthetically useful outcomes. Second, the substitution of economically and environmentally benign nonmetal reductants for Zn/Mn can help scale up XEC reactions and avoid trace metals in pharmaceutical products, but research in this direction has progressed slowly. Finally, it is highly warranted to leverage mechanistic insights from Ni-catalyzed XEC to develop innovative thermoredox coupling protocols, specifically designed to tackle challenges associated with difficult substrates such as C(sp)-H bonds and unactivated alkenes.In this Account, we address the aforementioned issues by reviewing our recent work on the reductive coupling of C-X and C-O electrophiles, the thermoredox strategy for coupling associated with C(sp)-H bonds and unactivated alkenes, and the use of diboron esters as nonmetal reductants to achieve reductive coupling. We focus on the mechanistic perspectives of the transformations, particularly how the key C-Ni-C intermediates are generated, in order to explain the chemoselective and regioselective coupling results. The Account consists of four sections. First, we discuss the Zn/Mn-mediated chemoselective C(sp)-C(sp) and C(sp)-C(sp) bond formations based on the coupling of selected alkyl/aryl, allyl/benzyl, and other electrophiles. Second, we describe the use of diboron esters as versatile reductants to achieve C(sp)-C(sp) and C(sp)-C(sp) couplings, with an emphasis on the mechanistic consideration for the construction of C(sp)-C(sp) bonds. Third, we discuss leveraging C(sp)-O bonds for effective C(sp)-C bond formation via in situ halogenation of alcohols as well as the reductive preparation of α-vinylated and -arylated unusual amino esters. In the final section, we illustrate the thermoredox functionalization of challenging C(sp)-H bonds with aryl and alkyl halides to afford C(sp)-C bonds by taking advantage of the compatibility of Zn with the oxidant di--butylperoxide (DTBP). Furthermore, we discuss a Ni-catalyzed and SiH/DTBP-mediated hydrodimerization of terminal alkenes to selectively forge head-to-head and methyl branched C(sp)-C(sp) bonds. This process, conducted in the presence or absence of catalytic CuBr, provides a solution to a long-standing challenge: site-selective hydrocoupling of unactivated alkenes to produce challenging C(sp)-C(sp) bonds.
概述
过渡金属催化的两个碳亲电试剂的还原交叉偶联反应,也称为交叉亲电试剂偶联(XEC),已经改变了C-C偶联化学的格局。特别是镍催化剂,在促进XEC反应方面表现出卓越的性能,通过使用各种亲电试剂形成C-C键,实现了多种优雅的转化。然而,仍有几个关键挑战有待解决。首先,在镍催化的C(sp)-C(sp)和C(sp)-C(sp)交叉偶联中,两种结构相似的亲电试剂之间的固有化学选择性尚未得到很好的理解;这就需要其中一种偶联伙伴过量才能获得具有合成价值的结果。其次,用经济且环境友好的非金属还原剂替代锌/锰有助于扩大XEC反应规模,并避免药品中出现痕量金属,但这方面的研究进展缓慢。最后,非常有必要利用镍催化XEC的机理见解来开发创新的热氧化还原偶联方案,专门用于应对与难反应底物(如C(sp)-H键和未活化烯烃)相关的挑战。
在本综述中,我们通过回顾我们最近关于C-X和C-O亲电试剂的还原偶联、与C(sp)-H键和未活化烯烃相关的偶联热氧化还原策略以及使用二硼酯作为非金属还原剂实现还原偶联的工作,来解决上述问题。我们关注这些转化的机理观点,特别是关键的C-Ni-C中间体是如何生成的,以便解释化学选择性和区域选择性偶联结果。本综述由四个部分组成。首先,我们讨论基于所选烷基/芳基、烯丙基/苄基和其他亲电试剂的偶联,锌/锰介导的化学选择性C(sp)-C(sp)和C(sp)-C(sp)键形成。其次,我们描述使用二硼酯作为通用还原剂实现C(sp)-C(sp)和C(sp)-C(sp)偶联,重点是构建C(sp)-C(sp)键的机理考虑。第三,我们讨论利用C(sp)-O键通过醇的原位卤化有效形成C(sp)-C键,以及α-乙烯基化和α-芳基化异常氨基酯的还原制备。在最后一部分,我们展示了利用锌与氧化剂二叔丁基过氧化物(DTBP)的相容性,用芳基和烷基卤化物对具有挑战性的C(sp)-H键进行热氧化还原官能化以形成C(sp)-C键。此外,我们讨论了镍催化且SiH/DTBP介导的末端烯烃的氢二聚化反应,以选择性地形成头对头和甲基支链的C(sp)-C(sp)键。这个过程在有或没有催化量的CuBr存在下进行,为一个长期存在的挑战提供了解决方案:未活化烯烃的位点选择性氢偶联以生成具有挑战性的C(sp)-C(sp)键。