Suppr超能文献

用于可持续碱性水电解的负载型铱纳米团簇的两面神电子态

Janus electronic state of supported iridium nanoclusters for sustainable alkaline water electrolysis.

作者信息

Liu Yaoda, Li Lei, Wang Li, Li Na, Zhao Xiaoxu, Chen Ya, Sakthivel Thangavel, Dai Zhengfei

机构信息

State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.

出版信息

Nat Commun. 2024 Apr 2;15(1):2851. doi: 10.1038/s41467-024-47045-6.

Abstract

Metal-support electronic interactions play crucial roles in triggering the hydrogen spillover (HSo) to boost hydrogen evolution reaction (HER). It requires the supported metal of electron-rich state to facilitate the proton adsorption/spillover. However, this electron-rich metal state contradicts the traditional metal→support electron transfer protocol and is not compatible with the electron-donating oxygen evolution reaction (OER), especially in proton-poor alkaline conditions. Here we profile an Ir/NiPS support structure to study the Ir electronic states and performances in HSo/OER-integrated alkaline water electrolysis. The supported Ir is evidenced with Janus electron-rich and electron-poor states at the tip and interface regions to respectively facilitate the HSo and OER processes. Resultantly, the water electrolysis (WE) is efficiently implemented with 1.51 V at 10 mA cm for 1000 h in 1 M KOH and 1.44 V in urea-KOH electrolyte. This research clarifies the Janus electronic state as fundamental in rationalizing efficient metal-support WE catalysts.

摘要

金属-载体电子相互作用在引发氢溢流(HSo)以促进析氢反应(HER)方面起着关键作用。这需要富电子态的负载金属来促进质子吸附/溢流。然而,这种富电子金属态与传统的金属→载体电子转移协议相矛盾,并且与供电子析氧反应(OER)不兼容,尤其是在贫质子的碱性条件下。在此,我们剖析了一种Ir/NiPS载体结构,以研究Ir在HSo/OER集成碱性水电解中的电子态和性能。负载的Ir在尖端和界面区域分别呈现出具有促进HSo和OER过程的双面富电子态和贫电子态。结果,在1 M KOH中,10 mA cm下1000小时的水电解(WE)以1.51 V有效实现,在尿素-KOH电解液中为1.44 V。本研究阐明了双面电子态是合理化高效金属-载体WE催化剂的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b2/10987502/b1acc8a83a32/41467_2024_47045_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验