Suppr超能文献

基于 RNAi 的药物设计:考虑因素和未来方向。

RNAi-based drug design: considerations and future directions.

机构信息

RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.

Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, USA.

出版信息

Nat Rev Drug Discov. 2024 May;23(5):341-364. doi: 10.1038/s41573-024-00912-9. Epub 2024 Apr 3.

Abstract

More than 25 years after its discovery, the post-transcriptional gene regulation mechanism termed RNAi is now transforming pharmaceutical development, proved by the recent FDA approval of multiple small interfering RNA (siRNA) drugs that target the liver. Synthetic siRNAs that trigger RNAi have the potential to specifically silence virtually any therapeutic target with unprecedented potency and durability. Bringing this innovative class of medicines to patients, however, has been riddled with substantial challenges, with delivery issues at the forefront. Several classes of siRNA drug are under clinical evaluation, but their utility in treating extrahepatic diseases remains limited, demanding continued innovation. In this Review, we discuss principal considerations and future directions in the design of therapeutic siRNAs, with a particular emphasis on chemistry, the application of informatics, delivery strategies and the importance of careful target selection, which together influence therapeutic success.

摘要

RNAi 是一种在后转录水平调控基因的机制,自发现以来已有 25 年以上的历史,目前正改变着药物研发领域,这一点已被最近 FDA 批准的多种针对肝脏的小干扰 RNA(siRNA)药物所证明。触发 RNAi 的合成 siRNA 具有以空前的效力和持久性特异性沉默几乎任何治疗靶标的潜力。然而,将这种创新药物带给患者充满了巨大的挑战,其中首要的就是输送问题。有几类 siRNA 药物正在临床评估中,但它们在治疗肝外疾病方面的应用仍然有限,这需要持续的创新。在这篇综述中,我们讨论了治疗性 siRNA 设计中的主要考虑因素和未来方向,特别强调了化学、信息学的应用、输送策略以及仔细选择靶标,这些因素共同影响着治疗的成功。

相似文献

1
RNAi-based drug design: considerations and future directions.
Nat Rev Drug Discov. 2024 May;23(5):341-364. doi: 10.1038/s41573-024-00912-9. Epub 2024 Apr 3.
2
RNA interference in the era of nucleic acid therapeutics.
Nat Biotechnol. 2024 Mar;42(3):394-405. doi: 10.1038/s41587-023-02105-y. Epub 2024 Feb 26.
3
Therapeutic face of RNAi: in vivo challenges.
Expert Opin Biol Ther. 2015 Feb;15(2):269-85. doi: 10.1517/14712598.2015.983070. Epub 2014 Nov 15.
4
RNA interference as a gene-specific approach for molecular medicine.
Curr Med Chem. 2005;12(26):3143-61. doi: 10.2174/092986705774933489.
5
Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
Early Hum Dev. 2009 Oct;85(10 Suppl):S31-5. doi: 10.1016/j.earlhumdev.2009.08.013. Epub 2009 Oct 14.
7
RNA Interference-Based Cancer Drugs: The Roadblocks, and the "Delivery" of the Promise.
Nucleic Acid Ther. 2019 Apr;29(2):61-66. doi: 10.1089/nat.2018.0762. Epub 2018 Dec 18.
8
Harnessing in vivo siRNA delivery for drug discovery and therapeutic development.
Drug Discov Today. 2006 Jan;11(1-2):67-73. doi: 10.1016/S1359-6446(05)03668-8.
10
siRNA delivery systems for cancer treatment.
Adv Drug Deliv Rev. 2009 Aug 10;61(10):850-62. doi: 10.1016/j.addr.2009.04.018. Epub 2009 May 5.

引用本文的文献

1
RNA Therapeutics: Bridging Discovery and Clinical Implementation.
Methods Mol Biol. 2025;2965:1-37. doi: 10.1007/978-1-0716-4742-4_1.
2
Lipid Nanoparticle Delivery of mRNA and siRNA for Concurrent Restoration of Tumor Suppressor and Inhibition of Tumorigenic Driver in Prostate Cancer.
ACS Nanosci Au. 2024 Dec 26;5(4):284-292. doi: 10.1021/acsnanoscienceau.4c00066. eCollection 2025 Aug 20.
3
Treatment of KRAS-Mutated Pancreatic Cancer: New Hope for the Patients?
Cancers (Basel). 2025 Jul 24;17(15):2453. doi: 10.3390/cancers17152453.
4
A dual fluorescence-based reporter assay for real-time determination of siRNA- and antisense oligonucleotide-mediated knockdown.
Mol Ther Nucleic Acids. 2025 Jul 17;36(3):102631. doi: 10.1016/j.omtn.2025.102631. eCollection 2025 Sep 9.
8
RNA chemistry and therapeutics.
Nat Rev Drug Discov. 2025 Jul 14. doi: 10.1038/s41573-025-01237-x.
9
mRNA vaccines and SiRNAs targeting cancer immunotherapy: challenges and opportunities.
Discov Oncol. 2025 Jul 5;16(1):1265. doi: 10.1007/s12672-025-03070-5.
10
Bacillus secretes nucleases to degrade dsRNA, thereby reducing host's susceptibility to RNAi.
NPJ Biofilms Microbiomes. 2025 Jul 3;11(1):127. doi: 10.1038/s41522-025-00757-z.

本文引用的文献

1
A programmable dual-targeting siRNA scaffold supports potent two-gene modulation in the central nervous system.
Nucleic Acids Res. 2024 Jun 24;52(11):6099-6113. doi: 10.1093/nar/gkae368.
2
Silencing Apoe with divalent-siRNAs improves amyloid burden and activates immune response pathways in Alzheimer's disease.
Alzheimers Dement. 2024 Apr;20(4):2632-2652. doi: 10.1002/alz.13703. Epub 2024 Feb 20.
3
A combinatorial approach for achieving CNS-selective RNAi.
Nucleic Acids Res. 2024 May 22;52(9):5273-5284. doi: 10.1093/nar/gkae100.
4
Multispecies-targeting siRNAs for the modulation of JAK1 in the skin.
Mol Ther Nucleic Acids. 2024 Jan 9;35(1):102117. doi: 10.1016/j.omtn.2024.102117. eCollection 2024 Mar 12.
5
Single intravitreal administration of a tetravalent siRNA exhibits robust and efficient gene silencing in mouse and pig photoreceptors.
Mol Ther Nucleic Acids. 2023 Dec 5;35(1):102088. doi: 10.1016/j.omtn.2023.102088. eCollection 2024 Mar 12.
6
Dendritic amphiphilic siRNA: Selective albumin binding, efficacy, and low toxicity.
Mol Ther Nucleic Acids. 2023 Nov 17;34:102080. doi: 10.1016/j.omtn.2023.102080. eCollection 2023 Dec 12.
7
Rational design of a JAK1-selective siRNA inhibitor for the modulation of autoimmunity in the skin.
Nat Commun. 2023 Nov 4;14(1):7099. doi: 10.1038/s41467-023-42714-4.
8
MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer's disease.
Science. 2023 Sep 15;381(6663):1176-1182. doi: 10.1126/science.abp9556. Epub 2023 Sep 14.
9
Mezigdomide plus Dexamethasone in Relapsed and Refractory Multiple Myeloma.
N Engl J Med. 2023 Sep 14;389(11):1009-1022. doi: 10.1056/NEJMoa2303194. Epub 2023 Aug 30.
10
From target discovery to clinical drug development with human genetics.
Nature. 2023 Aug;620(7975):737-745. doi: 10.1038/s41586-023-06388-8. Epub 2023 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验