Suppr超能文献

RAS-RAF-miR-296-3p 信号轴增加 Rad18 表达,增强胰腺和甲状腺癌细胞的放射抵抗性。

RAS-RAF-miR-296-3p signaling axis increases Rad18 expression to augment radioresistance in pancreatic and thyroid cancers.

机构信息

Department of Radiation Oncology, The University of Arkansas for Medical Sciences, The Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, USA.

Department of Radiation Oncology, City of Hope, Duarte, CA, USA.

出版信息

Cancer Lett. 2024 Jun 1;591:216873. doi: 10.1016/j.canlet.2024.216873. Epub 2024 Apr 10.

Abstract

Oncogenic RAS and RAF signaling has been implicated in contributing to radioresistance in pancreatic and thyroid cancers. In this study, we sought to better clarify molecular mechanisms contributing to this effect. We discovered that miRNA 296-3p (miR-296-3p) is significantly correlated with radiosensitivity in a panel of pancreatic cancer cells, and miR-296-3p is highly expressed in normal cells, but low in cancer cell lines. Elevated expression of miR-296-3p increases radiosensitization while decreasing the expression of the DNA repair enzyme RAD18 in both pancreatic and thyroid cancer cells. RAD18 is overexpressed in both pancreatic and thyroid tumors compared to matched normal controls, and high expression of RAD18 in tumors is associated with poor prognostic features. Modulating the expression of mutant KRAS in pancreatic cancer cells or mutant BRAF in thyroid cancer cells demonstrates a tight regulation of RAD18 expression in both cancer types. Depletion of RAD18 results in DNA damage and radiation-induced cell death. Importantly, RAD18 depletion in combination with radiotherapy results in marked and sustained tumor regression in KRAS mutant pancreatic cancer orthotopic tumors and BRAF mutant thyroid heterotopic tumors. Overall, our findings identify a novel coordinated RAS/RAF-miR-296-3p-RAD18 signaling network in pancreatic and thyroid cancer cells, which leads to enhanced radioresistance.

摘要

致癌性 RAS 和 RAF 信号已被认为有助于促进胰腺和甲状腺癌的放射抵抗。在这项研究中,我们试图更清楚地阐明导致这种效应的分子机制。我们发现,miRNA 296-3p(miR-296-3p)与一系列胰腺癌细胞的放射敏感性显著相关,并且 miR-296-3p 在正常细胞中高表达,但在癌细胞系中低表达。miR-296-3p 的高表达可增加放射敏感性,同时降低胰腺和甲状腺癌细胞中 DNA 修复酶 RAD18 的表达。RAD18 在胰腺和甲状腺肿瘤中的表达均高于相应的正常对照,肿瘤中 RAD18 的高表达与预后不良的特征相关。在胰腺癌细胞中调节突变型 KRAS 的表达或在甲状腺癌细胞中调节突变型 BRAF 的表达,均表明在两种癌症类型中 RAD18 的表达受到严格调控。RAD18 的耗竭导致 DNA 损伤和辐射诱导的细胞死亡。重要的是,RAD18 的耗竭与放射治疗联合使用可导致 KRAS 突变型胰腺癌原位肿瘤和 BRAF 突变型甲状腺异位肿瘤的显著和持续的肿瘤消退。总体而言,我们的研究结果确定了胰腺和甲状腺癌细胞中一种新的协调的 RAS/RAF-miR-296-3p-RAD18 信号网络,该网络导致放射抵抗增强。

相似文献

1
RAS-RAF-miR-296-3p signaling axis increases Rad18 expression to augment radioresistance in pancreatic and thyroid cancers.
Cancer Lett. 2024 Jun 1;591:216873. doi: 10.1016/j.canlet.2024.216873. Epub 2024 Apr 10.
4
MiR-143-3p suppresses tumorigenesis in pancreatic ductal adenocarcinoma by targeting KRAS.
Biomed Pharmacother. 2019 Nov;119:109424. doi: 10.1016/j.biopha.2019.109424. Epub 2019 Sep 12.
5
Activation of the RAS/RAF/ERK signaling pathway contributes to resistance to sunitinib in thyroid carcinoma cell lines.
J Clin Endocrinol Metab. 2012 Jun;97(6):E898-906. doi: 10.1210/jc.2011-3269. Epub 2012 Mar 22.
6
Switch in signaling control of mTORC1 activity after oncoprotein expression in thyroid cancer cell lines.
J Clin Endocrinol Metab. 2014 Oct;99(10):E1976-87. doi: 10.1210/jc.2013-3976. Epub 2014 Jul 16.
8
miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer.
Cancer Res. 2010 Jul 15;70(14):6015-25. doi: 10.1158/0008-5472.CAN-09-4531. Epub 2010 Jul 7.
9
A combinatorial strategy using YAP and pan-RAF inhibitors for treating KRAS-mutant pancreatic cancer.
Cancer Lett. 2017 Aug 28;402:61-70. doi: 10.1016/j.canlet.2017.05.015. Epub 2017 May 30.
10
The regulatory roles of miRNA and methylation on oncogene and tumor suppressor gene expression in pancreatic cancer cells.
Biochem Biophys Res Commun. 2012 Aug 17;425(1):51-7. doi: 10.1016/j.bbrc.2012.07.047. Epub 2012 Jul 20.

引用本文的文献

1
The Influence of Micronutrients and Environmental Factors on Thyroid DNA Integrity.
Nutrients. 2025 Jun 21;17(13):2065. doi: 10.3390/nu17132065.
2
Hsa_circ_0000515 sequesters microRNA-296-5p and elevates RNF44 expression to encourage the NSCLC progression.
J Cell Commun Signal. 2025 Feb 24;19(1):e70005. doi: 10.1002/ccs3.70005. eCollection 2025 Mar.

本文引用的文献

1
Targeting K-Ras-mediated DNA damage response in radiation oncology: Current status, challenges and future perspectives.
Clin Transl Radiat Oncol. 2022 Oct 17;38:6-14. doi: 10.1016/j.ctro.2022.10.004. eCollection 2023 Jan.
2
miRNA: A Promising Therapeutic Target in Cancer.
Int J Mol Sci. 2022 Sep 29;23(19):11502. doi: 10.3390/ijms231911502.
5
Estimated Projection of US Cancer Incidence and Death to 2040.
JAMA Netw Open. 2021 Apr 1;4(4):e214708. doi: 10.1001/jamanetworkopen.2021.4708.
6
Targeting in Cancer: Promising Therapeutic Strategies.
Cancers (Basel). 2021 Mar 10;13(6):1204. doi: 10.3390/cancers13061204.
7
Association of Ablative Radiation Therapy With Survival Among Patients With Inoperable Pancreatic Cancer.
JAMA Oncol. 2021 May 1;7(5):735-738. doi: 10.1001/jamaoncol.2021.0057.
8
Cancer Statistics, 2021.
CA Cancer J Clin. 2021 Jan;71(1):7-33. doi: 10.3322/caac.21654. Epub 2021 Jan 12.
10
Intensified systemic therapy and stereotactic ablative radiotherapy dose for patients with unresectable pancreatic adenocarcinoma.
Radiother Oncol. 2020 Nov;152:63-69. doi: 10.1016/j.radonc.2020.07.053. Epub 2020 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验