Suppr超能文献

基于深度量子卷积神经网络的面部表情识别用于心理健康分析。

A Deep Quantum Convolutional Neural Network Based Facial Expression Recognition For Mental Health Analysis.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:1556-1565. doi: 10.1109/TNSRE.2024.3385336.

Abstract

The purpose of this work is to analyze how new technologies can enhance clinical practice while also examining the physical traits of emotional expressiveness of face expression in a number of psychiatric illnesses. Hence, in this work, an automatic facial expression recognition system has been proposed that analyzes static, sequential, or video facial images from medical healthcare data to detect emotions in people's facial regions. The proposed method has been implemented in five steps. The first step is image preprocessing, where a facial region of interest has been segmented from the input image. The second component includes a classical deep feature representation and the quantum part that involves successive sets of quantum convolutional layers followed by random quantum variational circuits for feature learning. Here, the proposed system has attained a faster training approach using the proposed quantum convolutional neural network approach that takes [Formula: see text] time. In contrast, the classical convolutional neural network models have [Formula: see text] time. Additionally, some performance improvement techniques, such as image augmentation, fine-tuning, matrix normalization, and transfer learning methods, have been applied to the recognition system. Finally, the scores due to classical and quantum deep learning models are fused to improve the performance of the proposed method. Extensive experimentation with Karolinska-directed emotional faces (KDEF), Static Facial Expressions in the Wild (SFEW 2.0), and Facial Expression Recognition 2013 (FER-2013) benchmark databases and compared with other state-of-the-art methods that show the improvement of the proposed system.

摘要

这项工作的目的是分析新技术如何增强临床实践,同时检查多种精神疾病中面部表情的情感表达的物理特征。因此,在这项工作中,提出了一种自动面部表情识别系统,该系统可以分析来自医疗保健数据的静态、顺序或视频面部图像,以检测人们面部区域的情绪。所提出的方法已经分五步实施。第一步是图像预处理,其中从输入图像中分割出感兴趣的面部区域。第二个组件包括经典的深度特征表示和量子部分,涉及连续的量子卷积层集,后面跟着用于特征学习的随机量子变分电路。在这里,所提出的系统通过使用提出的量子卷积神经网络方法实现了更快的训练方法,该方法需要 [Formula: see text] 的时间。相比之下,经典卷积神经网络模型需要 [Formula: see text] 的时间。此外,还应用了一些性能改进技术,例如图像增强、微调、矩阵归一化和迁移学习方法,到识别系统中。最后,将经典和量子深度学习模型的分数融合以提高所提出方法的性能。在 Karolinska-directed 情感面孔 (KDEF)、Wild 静态面部表情 (SFEW 2.0) 和 Facial Expression Recognition 2013 (FER-2013) 基准数据库上进行了广泛的实验,并与其他最先进的方法进行了比较,这些方法表明了所提出系统的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验