Suppr超能文献

少突胶质细胞:髓鞘形成、可塑性与轴突支持

Oligodendrocytes: Myelination, Plasticity, and Axonal Support.

作者信息

Simons Mikael, Gibson Erin M, Nave Klaus-Armin

机构信息

Institute of Neuronal Cell Biology, Technical University Munich, Munich 80802, Germany

German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Institute for Stroke and Dementia Research, Munich 81377, Germany.

出版信息

Cold Spring Harb Perspect Biol. 2024 Oct 1;16(10):a041359. doi: 10.1101/cshperspect.a041359.

Abstract

The myelination of axons has evolved to enable fast and efficient transduction of electrical signals in the vertebrate nervous system. Acting as an electric insulator, the myelin sheath is a multilamellar membrane structure around axonal segments generated by the spiral wrapping and subsequent compaction of oligodendroglial plasma membranes. These oligodendrocytes are metabolically active and remain functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of metabolites and macromolecules to and from the internodal periaxonal space under the myelin sheath. Increasing evidence indicates that oligodendrocyte numbers, specifically in the forebrain, and myelin as a dynamic cellular compartment can both respond to physiological demands, collectively referred to as adaptive myelination. This review summarizes our current understanding of how myelin is generated, how its function is dynamically regulated, and how oligodendrocytes support the long-term integrity of myelinated axons.

摘要

轴突的髓鞘形成已经进化,以实现脊椎动物神经系统中电信号的快速高效传导。作为一种电绝缘体,髓鞘是围绕轴突节段的多层膜结构,由少突胶质细胞质膜的螺旋缠绕和随后的压实产生。这些少突胶质细胞代谢活跃,并通过富含细胞质的髓鞘通道与下方的轴突保持功能连接,以便代谢物和大分子在髓鞘下的节间轴周间隙中进出移动。越来越多的证据表明,少突胶质细胞的数量,特别是在前脑中,以及作为一个动态细胞区室的髓鞘,都可以对生理需求做出反应,统称为适应性髓鞘形成。本综述总结了我们目前对髓鞘如何产生、其功能如何动态调节以及少突胶质细胞如何支持有髓轴突的长期完整性的理解。

相似文献

1
Oligodendrocytes: Myelination, Plasticity, and Axonal Support.
Cold Spring Harb Perspect Biol. 2024 Oct 1;16(10):a041359. doi: 10.1101/cshperspect.a041359.
2
Oligodendrocytes: Myelination and Axonal Support.
Cold Spring Harb Perspect Biol. 2015 Jun 22;8(1):a020479. doi: 10.1101/cshperspect.a020479.
3
On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function.
J Neurosci. 2017 Oct 18;37(42):10023-10034. doi: 10.1523/JNEUROSCI.3185-16.2017.
5
Individual neuronal subtypes control initial myelin sheath growth and stabilization.
Neural Dev. 2020 Sep 28;15(1):12. doi: 10.1186/s13064-020-00149-3.
6
Building a (w)rapport between neurons and oligodendroglia: Reciprocal interactions underlying adaptive myelination.
Neuron. 2021 Apr 21;109(8):1258-1273. doi: 10.1016/j.neuron.2021.02.003. Epub 2021 Feb 22.
7
Oligodendrocyte Development in the Absence of Their Target Axons In Vivo.
PLoS One. 2016 Oct 7;11(10):e0164432. doi: 10.1371/journal.pone.0164432. eCollection 2016.
8
Oligodendrocyte HCN2 Channels Regulate Myelin Sheath Length.
J Neurosci. 2021 Sep 22;41(38):7954-7964. doi: 10.1523/JNEUROSCI.2463-20.2021. Epub 2021 Aug 2.
10
Diversity Matters: A Revised Guide to Myelination.
Trends Cell Biol. 2016 Feb;26(2):135-147. doi: 10.1016/j.tcb.2015.09.002. Epub 2015 Oct 3.

引用本文的文献

1
Emerging Role of Oligodendrocytes Malfunction in the Progression of Alzheimer's Disease.
J Neuroimmune Pharmacol. 2025 Sep 1;20(1):79. doi: 10.1007/s11481-025-10236-z.
2
Gene Therapy of Adrenomyeloneuropathy: Challenges, Target Cells, and Prospectives.
Biomedicines. 2025 Aug 4;13(8):1892. doi: 10.3390/biomedicines13081892.
3
Oligodendrocytes and myelination: pioneering new frontiers in cognitive neuroscience.
Front Neurosci. 2025 Jul 21;19:1618468. doi: 10.3389/fnins.2025.1618468. eCollection 2025.
4
5
Myelin dysfunction in aging and brain disorders: mechanisms and therapeutic opportunities.
Mol Neurodegener. 2025 Jun 15;20(1):69. doi: 10.1186/s13024-025-00861-w.
6
An Overview of Oligodendrocyte Metabolism.
Adv Neurobiol. 2025;43:155-179. doi: 10.1007/978-3-031-87919-7_7.
7
Revisiting the Pathogenesis of X-Linked Adrenoleukodystrophy.
Genes (Basel). 2025 May 17;16(5):590. doi: 10.3390/genes16050590.
8
Pathways to Progressive Disability in Multiple Sclerosis: The Role of Glial Cells in Chronic CNS Inflammation.
Glia. 2025 Oct;73(10):1928-1950. doi: 10.1002/glia.70044. Epub 2025 May 23.
10
Oligodendrogenesis in Evolution, Development and Adulthood.
Glia. 2025 Sep;73(9):1770-1783. doi: 10.1002/glia.70033. Epub 2025 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验