Suppr超能文献

针对免疫原性细胞应激和死亡的癌症治疗。

Targeting immunogenic cell stress and death for cancer therapy.

机构信息

Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.

Sandra and Edward Meyer Cancer Center, New York, NY, USA.

出版信息

Nat Rev Drug Discov. 2024 Jun;23(6):445-460. doi: 10.1038/s41573-024-00920-9. Epub 2024 Apr 15.

Abstract

Immunogenic cell death (ICD), which results from insufficient cellular adaptation to specific stressors, occupies a central position in the development of novel anticancer treatments. Several therapeutic strategies to elicit ICD - either as standalone approaches or as means to convert immunologically cold tumours that are insensitive to immunotherapy into hot and immunotherapy-sensitive lesions - are being actively pursued. However, the development of ICD-inducing treatments is hindered by various obstacles. Some of these relate to the intrinsic complexity of cancer cell biology, whereas others arise from the use of conventional therapeutic strategies that were developed according to immune-agnostic principles. Moreover, current discovery platforms for the development of novel ICD inducers suffer from limitations that must be addressed to improve bench-to-bedside translational efforts. An improved appreciation of the conceptual difference between key factors that discriminate distinct forms of cell death will assist the design of clinically viable ICD inducers.

摘要

免疫原性细胞死亡(ICD)是由于细胞对特定应激原的适应不足而产生的,在新型抗癌治疗的发展中占据核心地位。目前正在积极探索几种引发 ICD 的治疗策略——无论是作为独立的方法,还是作为将对免疫疗法不敏感的免疫冷肿瘤转化为对免疫疗法敏感的热肿瘤的手段。然而,ICD 诱导治疗的发展受到各种障碍的阻碍。其中一些与癌细胞生物学的内在复杂性有关,而另一些则源于根据免疫不可知原则开发的传统治疗策略的使用。此外,目前用于开发新型 ICD 诱导剂的发现平台存在局限性,必须加以解决,以改善从实验室到临床的转化工作。更好地理解区分不同形式细胞死亡的关键因素之间的概念差异,将有助于设计临床上可行的 ICD 诱导剂。

相似文献

1
Targeting immunogenic cell stress and death for cancer therapy.
Nat Rev Drug Discov. 2024 Jun;23(6):445-460. doi: 10.1038/s41573-024-00920-9. Epub 2024 Apr 15.
2
Nanomedicine to aid immunogenic cell death (ICD)-based anticancer therapy.
Trends Cancer. 2024 Jun;10(6):486-489. doi: 10.1016/j.trecan.2024.03.003. Epub 2024 Mar 29.
4
Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy.
Acta Pharmacol Sin. 2020 Jul;41(7):986-994. doi: 10.1038/s41401-020-0400-z. Epub 2020 Apr 21.
5
Immunogenic cell death inducers for cancer therapy: An emerging focus on natural products.
Phytomedicine. 2024 Sep;132:155828. doi: 10.1016/j.phymed.2024.155828. Epub 2024 Jun 13.
7
Cobalt(III) prodrug-based nanomedicine for inducing immunogenic cell death and enhancing chemo-immunotherapy.
J Control Release. 2024 Sep;373:493-506. doi: 10.1016/j.jconrel.2024.07.042. Epub 2024 Jul 25.
8
Nanoparticle-Mediated Immunogenic Cell Death Enables and Potentiates Cancer Immunotherapy.
Angew Chem Int Ed Engl. 2019 Jan 14;58(3):670-680. doi: 10.1002/anie.201804882. Epub 2018 Nov 15.
9
Immunogenic cell death-based cancer vaccines: promising prospect in cancer therapy.
Front Immunol. 2024 Apr 29;15:1389173. doi: 10.3389/fimmu.2024.1389173. eCollection 2024.
10
Current status of nanoparticle-mediated immunogenic cell death in cancer immunotherapy.
Int Immunopharmacol. 2024 Dec 5;142(Pt A):113085. doi: 10.1016/j.intimp.2024.113085. Epub 2024 Sep 13.

引用本文的文献

1
Triaptosis and Cancer: Next Hope?
Research (Wash D C). 2025 Sep 9;8:0880. doi: 10.34133/research.0880. eCollection 2025.
2
Mitochondria-targeted MXene@MnO-TPP nanoheterostructures for synergistic enhancement of sonodynamic therapy and immunotherapy in osteosarcoma.
Bioact Mater. 2025 Aug 28;54:450-465. doi: 10.1016/j.bioactmat.2025.08.029. eCollection 2025 Dec.
3
Inflammatory mitochondrial signalling and viral mimicry in cancer.
J Transl Med. 2025 Sep 2;23(1):982. doi: 10.1186/s12967-025-06931-3.
7
Datopotamab deruxtecan induces hallmarks of immunogenic cell death.
Cell Stress. 2025 Aug 11;9:194-200. doi: 10.15698/cst2025.08.311. eCollection 2025.
9
Reprogramming the tumor-immune landscape via nanomaterial-induced immunogenic cell death: a mini review.
Front Bioeng Biotechnol. 2025 Jul 22;13:1635747. doi: 10.3389/fbioe.2025.1635747. eCollection 2025.
10
Immuno-oncological effects of the α2-adrenoceptor agonist dexmedetomidine.
Oncoimmunology. 2025 Dec;14(1):2542334. doi: 10.1080/2162402X.2025.2542334. Epub 2025 Aug 1.

本文引用的文献

1
Role of the microbiota in response to and recovery from cancer therapy.
Nat Rev Immunol. 2024 May;24(5):308-325. doi: 10.1038/s41577-023-00951-0. Epub 2023 Nov 6.
3
Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer.
Sci Transl Med. 2023 Nov;15(720):eadg3049. doi: 10.1126/scitranslmed.adg3049. Epub 2023 Nov 1.
4
Immunosurveillance in clinical cancer management.
CA Cancer J Clin. 2024 Mar-Apr;74(2):187-202. doi: 10.3322/caac.21818. Epub 2023 Oct 25.
5
Ablation of ERO1A induces lethal endoplasmic reticulum stress responses and immunogenic cell death to activate anti-tumor immunity.
Cell Rep Med. 2023 Oct 17;4(10):101206. doi: 10.1016/j.xcrm.2023.101206. Epub 2023 Sep 27.
6
Tertiary lymphoid structures as hubs of antitumour immunity.
Nat Rev Cancer. 2023 Dec;23(12):803. doi: 10.1038/s41568-023-00626-x.
8
Prognostic significance of STING expression in solid tumor: a systematic review and meta-analysis.
Front Oncol. 2023 Aug 29;13:1244962. doi: 10.3389/fonc.2023.1244962. eCollection 2023.
10
BCL2 Inhibition Reveals a Dendritic Cell-Specific Immune Checkpoint That Controls Tumor Immunosurveillance.
Cancer Discov. 2023 Nov 1;13(11):2448-2469. doi: 10.1158/2159-8290.CD-22-1338.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验