Suppr超能文献

利用润湿性工程技术,用低成本材料制作三层自制口罩。

Leveraging Wettability Engineering to Develop Three-Layer DIY Face Masks From Low-Cost Materials.

作者信息

Sarkar Sourav, Mukhopadhyay Achintya, Sen Swarnendu, Mondal Safwan, Banerjee Arnav, Mandal Pranibesh, Ghosh Ratna, Megaridis Constantine M, Ganguly Ranjan

机构信息

Center for Development of Appropriate Social Technologies (CAST), Jadavpur University, Kolkata, India.

Mechanical Engineering Department, Jadavpur University, Kolkata, India.

出版信息

Trans Indian Natl Acad Eng. 2020;5(2):393-398. doi: 10.1007/s41403-020-00115-9. Epub 2020 Jun 4.

Abstract

With the rapid spread of COVID-19 worldwide, the demand for appropriate face masks in the market has also skyrocketed. To ease strain on the supply of masks to the essential healthcare sector, it has become imperative that ordinary people rely more on home-made masks that can be easily put together using commonly available materials, while at the same time performing reasonably at arresting the ingress or egress of airborne droplets. Here, we propose a simple do-it-yourself (DIY) method for preparing a three-layered face mask that deploys two hydrophobic polypropylene nonwoven layers interspaced with a hydrophilic cellulosic cloth. The first hydrophobic layer, facing the user, allows high-momentum droplets (e.g., expelled by a sneeze or cough) to pass through and get absorbed in the next hydrophilic layer, thereby keeping the skin in contact with the mask dry and comfortable. The third (outermost) hydrophobic layer prevents penetration of the liquids from the middle layer to the outside, and also arrests any airborne droplets on its exterior. Simple tests show that our masks perform better in arresting the droplet transmission as compared to surgical masks available in the market.

摘要

随着新冠病毒在全球的迅速传播,市场对合适口罩的需求也急剧飙升。为缓解向关键医疗保健部门供应口罩的压力,普通人更依赖使用常见材料就能轻松自制的口罩变得势在必行,同时这种口罩在阻挡空气传播飞沫的进出方面要表现得合理有效。在此,我们提出一种简单的自制(DIY)方法来制备三层口罩,该口罩采用两层疏水性聚丙烯无纺布层,中间夹一层亲水性纤维素布。面向使用者的第一层疏水层能让高动量飞沫(如打喷嚏或咳嗽喷出的飞沫)穿过并被下一层亲水性层吸收,从而使与口罩接触的皮肤保持干爽舒适。第三层(最外层)疏水层可防止中间层的液体渗透到外部,还能阻挡其外部的任何空气传播飞沫。简单测试表明,与市场上的外科口罩相比,我们的口罩在阻挡飞沫传播方面表现更佳。

相似文献

1
Leveraging Wettability Engineering to Develop Three-Layer DIY Face Masks From Low-Cost Materials.
Trans Indian Natl Acad Eng. 2020;5(2):393-398. doi: 10.1007/s41403-020-00115-9. Epub 2020 Jun 4.
2
Evaluating Droplet Survivability on Face Masks with X-ray Microtomography.
ACS Appl Bio Mater. 2024 Jan 15;7(1):193-202. doi: 10.1021/acsabm.3c00804. Epub 2023 Dec 26.
3
Effectiveness of N95 Mask in Preventing COVID-19 Transmission.
Trans Indian Natl Acad Eng. 2023;8(2):253-262. doi: 10.1007/s41403-023-00394-y. Epub 2023 Feb 23.
4
Evaluation of expelled droplets through traditional Islamic face coverings.
Ann Saudi Med. 2022 Sep-Oct;42(5):299-304. doi: 10.5144/0256-4947.2022.299. Epub 2022 Oct 6.
5
Experimental Evidence for the Optimal Design of a High-Performing Cloth Mask.
ACS Biomater Sci Eng. 2021 Jun 14;7(6):2791-2802. doi: 10.1021/acsbiomaterials.1c00368. Epub 2021 May 21.
7
On respiratory droplets and face masks.
Phys Fluids (1994). 2020 Jun 1;32(6):063303. doi: 10.1063/5.0015044.
8
On secondary atomization and blockage of surrogate cough droplets in single- and multilayer face masks.
Sci Adv. 2021 Mar 5;7(10). doi: 10.1126/sciadv.abf0452. Print 2021 Mar.
10
Performance of fabrics for home-made masks against the spread of COVID-19 through droplets: A quantitative mechanistic study.
Extreme Mech Lett. 2020 Oct;40:100924. doi: 10.1016/j.eml.2020.100924. Epub 2020 Aug 11.

引用本文的文献

1
PREFACE on the Special Issue 'Technologies for Fighting COVID-19'.
Trans Indian Natl Acad Eng. 2020;5(2):91-95. doi: 10.1007/s41403-020-00156-0. Epub 2020 Jul 25.
2
Regeneration of an electret filter by contact electrification.
RSC Adv. 2021 Jan 22;11(8):4610-4615. doi: 10.1039/d0ra09769a. eCollection 2021 Jan 21.
5
Graphene nanoplatelet and graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2.
iScience. 2021 Jul 23;24(7):102788. doi: 10.1016/j.isci.2021.102788. Epub 2021 Jun 25.
6
Evaluation of supercritical CO sterilization efficacy for sanitizing personal protective equipment from the coronavirus SARS-CoV-2.
Sci Total Environ. 2021 Aug 1;780:146519. doi: 10.1016/j.scitotenv.2021.146519. Epub 2021 Mar 18.
7
Probability of COVID-19 infection by cough of a normal person and a super-spreader.
Phys Fluids (1994). 2021 Mar 1;33(3):031704. doi: 10.1063/5.0041596. Epub 2021 Mar 5.

本文引用的文献

1
Precise Liquid Transport on and through Thin Porous Materials.
Langmuir. 2018 Feb 27;34(8):2865-2875. doi: 10.1021/acs.langmuir.7b04093. Epub 2018 Feb 14.
2
The fluid diode: tunable unidirectional flow through porous substrates.
ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12837-43. doi: 10.1021/am5028204. Epub 2014 Jul 14.
4
A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper.
Lab Chip. 2012 Aug 21;12(16):2909-13. doi: 10.1039/c2lc20970e. Epub 2012 Jun 14.
5
Flow dynamics and characterization of a cough.
Indoor Air. 2009 Dec;19(6):517-25. doi: 10.1111/j.1600-0668.2009.00619.x. Epub 2009 Jul 31.
6
The size and concentration of droplets generated by coughing in human subjects.
J Aerosol Med. 2007 Winter;20(4):484-94. doi: 10.1089/jam.2007.0610.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验