Suppr超能文献

植物细胞器的液泡降解。

Vacuolar degradation of plant organelles.

机构信息

Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA.

School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.

出版信息

Plant Cell. 2024 Sep 3;36(9):3036-3056. doi: 10.1093/plcell/koae128.

Abstract

Plants continuously remodel and degrade their organelles due to damage from their metabolic activities and environmental stressors, as well as an integral part of their cell differentiation programs. Whereas certain organelles use local hydrolytic enzymes for limited remodeling, most of the pathways that control the partial or complete dismantling of organelles rely on vacuolar degradation. Specifically, selective autophagic pathways play a crucial role in recognizing and sorting plant organelle cargo for vacuolar clearance, especially under cellular stress conditions induced by factors like heat, drought, and damaging light. In these short reviews, we discuss the mechanisms that control the vacuolar degradation of chloroplasts, mitochondria, endoplasmic reticulum, Golgi, and peroxisomes, with an emphasis on autophagy, recently discovered selective autophagy receptors for plant organelles, and crosstalk with other catabolic pathways.

摘要

由于代谢活动和环境胁迫的损伤,以及细胞分化程序的一个组成部分,植物不断重塑和降解它们的细胞器。虽然某些细胞器使用局部水解酶进行有限的重塑,但大多数控制细胞器部分或完全解体的途径依赖于液泡降解。具体来说,选择性自噬途径在识别和分拣植物细胞器货物以进行液泡清除方面起着至关重要的作用,特别是在由热、干旱和破坏性光等因素引起的细胞应激条件下。在这些简短的综述中,我们讨论了控制叶绿体、线粒体、内质网、高尔基体和过氧化物酶体液泡降解的机制,重点介绍了自噬、最近发现的植物细胞器选择性自噬受体,以及与其他分解代谢途径的相互作用。

相似文献

1
Vacuolar degradation of plant organelles.
Plant Cell. 2024 Sep 3;36(9):3036-3056. doi: 10.1093/plcell/koae128.
2
Autophagic degradation of membrane-bound organelles in plants.
Biosci Rep. 2023 Jan 31;43(1). doi: 10.1042/BSR20221204.
3
Endoplasmic reticulum and Golgi complex: Contributions to, and turnover by, autophagy.
Traffic. 2006 Dec;7(12):1590-5. doi: 10.1111/j.1600-0854.2006.00495.x. Epub 2006 Oct 16.
4
Organelle identification and proteomics in plant cells.
Trends Biotechnol. 2003 Aug;21(8):331-2. doi: 10.1016/s0167-7799(03)00163-x.
5
Vacuolar digestion of entire damaged chloroplasts in Arabidopsis thaliana is accomplished by chlorophagy.
Autophagy. 2017 Jul 3;13(7):1239-1240. doi: 10.1080/15548627.2017.1310360. Epub 2017 May 26.
6
Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways.
J Cell Biol. 1998 Nov 30;143(5):1183-99. doi: 10.1083/jcb.143.5.1183.
7
Vacuolar protein sorting mechanisms in plants.
FEBS J. 2013 Feb;280(4):979-93. doi: 10.1111/febs.12092. Epub 2013 Jan 11.
8
Transport, functions, and interaction of calcium and manganese in plant organellar compartments.
Plant Physiol. 2021 Dec 4;187(4):1940-1972. doi: 10.1093/plphys/kiab122.
9
Organelle Interactions in Plant Cells.
Results Probl Cell Differ. 2024;73:43-69. doi: 10.1007/978-3-031-62036-2_3.
10
Making connections: interorganelle contacts orchestrate mitochondrial behavior.
Trends Cell Biol. 2014 Sep;24(9):537-45. doi: 10.1016/j.tcb.2014.04.004. Epub 2014 Apr 28.

引用本文的文献

1
Blue light-tuned selective autophagy: CRY1 intercepts ATG8 to protect HY5.
Plant Cell. 2025 Aug 4;37(8). doi: 10.1093/plcell/koaf198.
2
Rapamycin-Reactivated Lipid Catabolism in Mill. Exposed to Salt Stress.
Cells. 2025 Jul 15;14(14):1083. doi: 10.3390/cells14141083.
3
Chloroplast Vesiculation and Induced and Expression During Tomato Flower Pedicel Abscission.
Plant Direct. 2025 Jan 8;9(1):e70035. doi: 10.1002/pld3.70035. eCollection 2025 Jan.
4
Focus on proteolysis.
Plant Cell. 2024 Sep 3;36(9):2929-2930. doi: 10.1093/plcell/koae182.

本文引用的文献

1
Atg8 family proteins, LIR/AIM motifs and other interaction modes.
Autophagy Rep. 2023 Mar 19;2(1). doi: 10.1080/27694127.2023.2188523. eCollection 2023 Dec 31.
2
The UFM1 system: Working principles, cellular functions, and pathophysiology.
Mol Cell. 2024 Jan 4;84(1):156-169. doi: 10.1016/j.molcel.2023.11.034. Epub 2023 Dec 22.
3
OsHLP1 is an endoplasmic-reticulum-phagy receptor in rice plants.
Cell Rep. 2023 Dec 26;42(12):113480. doi: 10.1016/j.celrep.2023.113480. Epub 2023 Nov 28.
4
ARP2/3 complex associates with peroxisomes to participate in pexophagy in plants.
Nat Plants. 2023 Nov;9(11):1874-1889. doi: 10.1038/s41477-023-01542-6. Epub 2023 Oct 16.
5
Stress-induced endocytosis from chloroplast inner envelope membrane is mediated by CHLOROPLAST VESICULATION but inhibited by GAPC.
Cell Rep. 2023 Oct 31;42(10):113208. doi: 10.1016/j.celrep.2023.113208. Epub 2023 Oct 4.
6
Proteome census upon nutrient stress reveals Golgiphagy membrane receptors.
Nature. 2023 Nov;623(7985):167-174. doi: 10.1038/s41586-023-06657-6. Epub 2023 Sep 27.
7
The interplay between autophagy and chloroplast vesiculation pathways under dark-induced senescence.
Plant Cell Environ. 2023 Dec;46(12):3721-3736. doi: 10.1111/pce.14701. Epub 2023 Aug 24.
8
Autophagy during maize endosperm development dampens oxidative stress and promotes mitochondrial clearance.
Plant Physiol. 2023 Sep 22;193(2):1395-1415. doi: 10.1093/plphys/kiad340.
9
ER-to-lysosome-associated degradation in a nutshell: mammalian, yeast, and plant ER-phagy as induced by misfolded proteins.
FEBS Lett. 2023 Aug;597(15):1928-1945. doi: 10.1002/1873-3468.14674. Epub 2023 Jun 10.
10
Selective autophagy regulates chloroplast protein import and promotes plant stress tolerance.
EMBO J. 2023 Jul 17;42(14):e112534. doi: 10.15252/embj.2022112534. Epub 2023 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验