Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
Biognosys AG, Schlieren, Zurich 8952, Switzerland.
J Proteome Res. 2024 Jun 7;23(6):1926-1936. doi: 10.1021/acs.jproteome.3c00671. Epub 2024 May 1.
Data-independent acquisition has seen breakthroughs that enable comprehensive proteome profiling using short gradients. As the proteome coverage continues to increase, the quality of the data generated becomes much more relevant. Using Spectronaut, we show that the default search parameters can be easily optimized to minimize the occurrence of false positives across different samples. Using an immunological infection model system to demonstrate the impact of adjusting search settings, we analyzed macrophages and compared their proteome to macrophages spiked with. This experimental system enabled the identification of "false positives" as peptides and proteins should not be present in the -only samples. We show that adjusting the search parameters reduced "false positive" identifications by 89% at the peptide and protein level, thereby considerably increasing the quality of the data. We also show that these optimized parameters incurred a moderate cost, only reducing the overall number of "true positive" identifications across each biological replicate by <6.7% at both the peptide and protein level. We believe the value of our updated search parameters extends beyond a two-organism analysis and would be of great value to any DIA experiment analyzing heterogeneous populations of cell types or tissues.
数据非依赖性采集技术取得了突破性进展,可实现使用短梯度进行全面蛋白质组分析。随着蛋白质组覆盖范围的不断扩大,所生成数据的质量变得更加重要。我们使用 Spectronaut 表明,可以轻松优化默认搜索参数,以最大限度地减少不同样本中假阳性的发生。我们使用免疫感染模型系统来演示调整搜索设置的影响,分析了巨噬细胞,并将其与添加了 的巨噬细胞进行了比较。该实验系统能够识别“假阳性”,因为 肽和蛋白质不应该存在于仅添加 的样本中。我们表明,调整搜索参数可将肽和蛋白质水平的“假阳性”鉴定减少 89%,从而极大地提高了数据质量。我们还表明,这些优化参数的成本适中,仅将每个生物学重复的整体“真阳性”鉴定数量分别减少 <6.7%,在肽和蛋白质水平上。我们相信,我们更新的搜索参数的价值不仅限于两种生物的分析,对于分析细胞类型或组织异质群体的任何 DIA 实验都将具有重要价值。