Suppr超能文献

线粒体钙调节在心脏代谢中的作用:健康与疾病。

Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease.

机构信息

Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States.

Division of Cardiovascular Medicine, Department of Internal Medicine, Biochemistry, Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States.

出版信息

Physiology (Bethesda). 2024 Sep 1;39(5):0. doi: 10.1152/physiol.00014.2024. Epub 2024 May 7.

Abstract

Oxidative phosphorylation is regulated by mitochondrial calcium (Ca) in health and disease. In physiological states, Ca enters via the mitochondrial Ca uniporter and rapidly enhances NADH and ATP production. However, maintaining Ca homeostasis is critical: insufficient Ca impairs stress adaptation, and Ca overload can trigger cell death. In this review, we delve into recent insights further defining the relationship between mitochondrial Ca dynamics and oxidative phosphorylation. Our focus is on how such regulation affects cardiac function in health and disease, including heart failure, ischemia-reperfusion, arrhythmias, catecholaminergic polymorphic ventricular tachycardia, mitochondrial cardiomyopathies, Barth syndrome, and Friedreich's ataxia. Several themes emerge from recent data. First, mitochondrial Ca regulation is critical for fuel substrate selection, metabolite import, and matching of ATP supply to demand. Second, mitochondrial Ca regulates both the production and response to reactive oxygen species (ROS), and the balance between its pro- and antioxidant effects is key to how it contributes to physiological and pathological states. Third, Ca exerts localized effects on the electron transport chain (ETC), not through traditional allosteric mechanisms but rather indirectly. These effects hinge on specific transporters, such as the uniporter or the Na/Ca exchanger, and may not be noticeable acutely, contributing differently to phenotypes depending on whether Ca transporters are acutely or chronically modified. Perturbations in these novel relationships during disease states may either serve as compensatory mechanisms or exacerbate impairments in oxidative phosphorylation. Consequently, targeting mitochondrial Ca holds promise as a therapeutic strategy for a variety of cardiac diseases characterized by contractile failure or arrhythmias.

摘要

氧化磷酸化受线粒体钙 (Ca) 在健康和疾病中的调节。在生理状态下,Ca 通过线粒体 Ca 单向转运体进入细胞,并迅速增强 NADH 和 ATP 的产生。然而,维持 Ca 稳态至关重要:Ca 不足会损害应激适应能力,而 Ca 超载会引发细胞死亡。在这篇综述中,我们深入探讨了最近的研究进展,进一步定义了线粒体 Ca 动力学与氧化磷酸化之间的关系。我们的重点是这种调节如何影响健康和疾病中心脏功能,包括心力衰竭、缺血再灌注、心律失常、儿茶酚胺多形性室性心动过速、线粒体心肌病、Barth 综合征和 Friedreich 共济失调。最近的数据出现了几个主题。首先,线粒体 Ca 调节对于燃料底物选择、代谢物输入以及 ATP 供应与需求的匹配至关重要。其次,线粒体 Ca 调节活性氧物质 (ROS) 的产生和反应,其促氧化剂和抗氧化剂作用之间的平衡是其如何促进生理和病理状态的关键。第三,Ca 对电子传递链 (ETC) 产生局部作用,不是通过传统的变构机制,而是间接作用。这些作用取决于特定的转运体,如单向转运体或 Na/Ca 交换体,并且在急性情况下可能不明显,根据 Ca 转运体是急性还是慢性改变,对表型的影响不同。在疾病状态下,这些新的关系发生变化可能既是代偿机制,也可能加剧氧化磷酸化的损伤。因此,靶向线粒体 Ca 作为治疗各种以收缩衰竭或心律失常为特征的心脏疾病的策略具有广阔前景。

相似文献

1
Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease.
Physiology (Bethesda). 2024 Sep 1;39(5):0. doi: 10.1152/physiol.00014.2024. Epub 2024 May 7.
5
Role of mitochondrial Ca in stroke: From molecular mechanism to treatment strategy (Review).
Mol Med Rep. 2025 Oct;32(4). doi: 10.3892/mmr.2025.13636. Epub 2025 Aug 1.
7
Ischemic damage to every segment of the oxidative phosphorylation cascade elevates ETC driving force and ROS production in cardiac mitochondria.
Am J Physiol Heart Circ Physiol. 2022 Sep 1;323(3):H499-H512. doi: 10.1152/ajpheart.00129.2022. Epub 2022 Jul 22.
8
10
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.

引用本文的文献

1
Calcium signaling in postsynaptic mitochondria: mechanisms, dynamics, and role in ATP production.
Front Mol Neurosci. 2025 Jul 21;18:1621070. doi: 10.3389/fnmol.2025.1621070. eCollection 2025.
4
Cannabidiol Prevents Heart Failure Dysfunction and Remodeling Through Preservation of Mitochondrial Function and Calcium Handling.
JACC Basic Transl Sci. 2025 Jun;10(6):800-821. doi: 10.1016/j.jacbts.2024.12.009. Epub 2025 Feb 19.
7
Mechanism of MCUB-Dependent Inhibition of Mitochondrial Calcium Uptake.
J Cell Physiol. 2025 Apr;240(4):e70033. doi: 10.1002/jcp.70033.
10
Causal gene identification using mitochondria-associated genome-wide mendelian randomization in atrial fibrillation.
Front Pharmacol. 2024 Jul 29;15:1439816. doi: 10.3389/fphar.2024.1439816. eCollection 2024.

本文引用的文献

2
Beyond the TCA cycle: new insights into mitochondrial calcium regulation of oxidative phosphorylation.
Biochem Soc Trans. 2023 Aug 31;51(4):1661-1673. doi: 10.1042/BST20230012.
3
Preserved respiratory chain capacity and physiology in mice with profoundly reduced levels of mitochondrial respirasomes.
Cell Metab. 2023 Oct 3;35(10):1799-1813.e7. doi: 10.1016/j.cmet.2023.07.015. Epub 2023 Aug 25.
6
Absence (of the uniporter) makes the heart grow fonder: The cardiac response to injury adapts after prolonged EMRE inhibition.
J Mol Cell Cardiol. 2023 Aug;181:31-32. doi: 10.1016/j.yjmcc.2023.05.006. Epub 2023 May 25.
7
Distinct effects of cardiac mitochondrial calcium uniporter inactivation via EMRE deletion in the short and long term.
J Mol Cell Cardiol. 2023 Aug;181:33-45. doi: 10.1016/j.yjmcc.2023.05.007. Epub 2023 May 23.
8
Sexual dimorphism in bidirectional SR-mitochondria crosstalk in ventricular cardiomyocytes.
Basic Res Cardiol. 2023 May 3;118(1):15. doi: 10.1007/s00395-023-00988-1.
9
Mitochondrial membrane potential instability on reperfusion after ischemia does not depend on mitochondrial Ca uptake.
J Biol Chem. 2023 Jun;299(6):104708. doi: 10.1016/j.jbc.2023.104708. Epub 2023 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验