Suppr超能文献

综合多组学分析鉴定卵巢癌风险区域的遗传和功能机制。

Integrative multi-omics analyses to identify the genetic and functional mechanisms underlying ovarian cancer risk regions.

机构信息

Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

出版信息

Am J Hum Genet. 2024 Jun 6;111(6):1061-1083. doi: 10.1016/j.ajhg.2024.04.011. Epub 2024 May 8.

Abstract

To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.

摘要

为了鉴定与上皮性卵巢癌(EOC)不同组织学类型相关的可信因果风险变异(CCVs),我们对 25981 例 EOC 病例和 105724 例欧洲裔对照中 470825 个已分型和 10163797 个已推断的 SNP 进行了全基因组关联分析。我们鉴定了五个组织学类型特异的 EOC 风险区域(p 值<5×10),并确认了 27 个风险区域的先前报道的关联。条件分析在六个风险区域中,除了主要信号外,还鉴定了另外 11 个独立的信号(p 值<10)。精细定位在这些区域中鉴定了 4008 个 CCVs,其中 1452 个 CCVs位于卵巢癌相关染色质标记中,在每个 EOC 组织学类型的活性增强子、活性启动子和活性区域中具有显著富集。在使用组织特异性和跨组织数据集的全转录组关联和共定位分析中,在已知的 EOC 风险区域中鉴定了 86 个候选易感性基因,在 23 个额外的基因组区域中鉴定了 32 个基因,这些基因可能代表新的 EOC 风险位点(错误发现率<0.05)。最后,通过整合全基因组 HiChIP 互作组分析与全转录组关联研究(TWAS)、变体效应预测器、转录因子 ChIP-seq 和 motifbreakR 数据,我们在每个位点鉴定了候选基因-CCV 相互作用。这包括 TWAS 鉴定出一个或多个候选易感性基因的风险位点(例如 2q31 上的 HOXD-AS2、HOXD8 和 HOXD3)和 TWAS 未鉴定出候选基因的其他位点(例如 8q24 上的 MYC 和 PVT1)。总之,本研究描述了一个功能框架,并提供了对全基因组关联研究鉴定的 EOC 易感性位点的风险等位基因和候选基因靶标生物学意义的更深入了解。

相似文献

1
Integrative multi-omics analyses to identify the genetic and functional mechanisms underlying ovarian cancer risk regions.
Am J Hum Genet. 2024 Jun 6;111(6):1061-1083. doi: 10.1016/j.ajhg.2024.04.011. Epub 2024 May 8.
2
A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk.
Cancer Res. 2018 Sep 15;78(18):5419-5430. doi: 10.1158/0008-5472.CAN-18-0951. Epub 2018 Jul 27.
3
Ovarian Cancer Risk Variants Are Enriched in Histotype-Specific Enhancers and Disrupt Transcription Factor Binding Sites.
Am J Hum Genet. 2020 Oct 1;107(4):622-635. doi: 10.1016/j.ajhg.2020.08.021. Epub 2020 Sep 17.
4
Integration of Population-Level Genotype Data with Functional Annotation Reveals Over-Representation of Long Noncoding RNAs at Ovarian Cancer Susceptibility Loci.
Cancer Epidemiol Biomarkers Prev. 2017 Jan;26(1):116-125. doi: 10.1158/1055-9965.EPI-16-0341. Epub 2016 Dec 29.
5
A targeted genetic association study of epithelial ovarian cancer susceptibility.
Oncotarget. 2016 Feb 16;7(7):7381-9. doi: 10.18632/oncotarget.7121.
6
Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.
Nat Genet. 2017 May;49(5):680-691. doi: 10.1038/ng.3826. Epub 2017 Mar 27.
7
Common Genetic Variation and Susceptibility to Ovarian Cancer: Current Insights and Future Directions.
Cancer Epidemiol Biomarkers Prev. 2018 Apr;27(4):395-404. doi: 10.1158/1055-9965.EPI-17-0315. Epub 2017 Jun 14.
8
Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer.
Carcinogenesis. 2015 Nov;36(11):1341-53. doi: 10.1093/carcin/bgv138. Epub 2015 Sep 29.
9
Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci.
J Natl Cancer Inst. 2022 Nov 14;114(11):1533-1544. doi: 10.1093/jnci/djac160.
10
Genetically predicted circulating protein biomarkers and ovarian cancer risk.
Gynecol Oncol. 2021 Feb;160(2):506-513. doi: 10.1016/j.ygyno.2020.11.016. Epub 2020 Nov 25.

引用本文的文献

2
Characterizing somatic mutations in ovarian cancer germline risk regions.
Commun Biol. 2025 Apr 29;8(1):676. doi: 10.1038/s42003-025-08072-1.
4
Cellular origins of mucinous ovarian carcinoma.
J Pathol. 2025 May;266(1):9-25. doi: 10.1002/path.6407. Epub 2025 Mar 3.
5
Exome sequencing identifies HELB as a novel susceptibility gene for non-mucinous, non-high-grade-serous epithelial ovarian cancer.
Eur J Hum Genet. 2025 Mar;33(3):297-303. doi: 10.1038/s41431-025-01786-0. Epub 2025 Feb 12.
8
Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia.
Am J Hum Genet. 2024 Jun 6;111(6):1084-1099. doi: 10.1016/j.ajhg.2024.04.012. Epub 2024 May 8.

本文引用的文献

1
DNA methylation QTL mapping across diverse human tissues provides molecular links between genetic variation and complex traits.
Nat Genet. 2023 Jan;55(1):112-122. doi: 10.1038/s41588-022-01248-z. Epub 2022 Dec 12.
2
Genetic determinants of chromatin reveal prostate cancer risk mediated by context-dependent gene regulation.
Nat Genet. 2022 Sep;54(9):1364-1375. doi: 10.1038/s41588-022-01168-y. Epub 2022 Sep 7.
3
Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data.
Nat Genet. 2022 Oct;54(10):1572-1580. doi: 10.1038/s41588-022-01167-z. Epub 2022 Sep 1.
4
5
Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer.
Nat Commun. 2021 Mar 30;12(1):1979. doi: 10.1038/s41467-021-22139-7.
6
c-MYC and Epithelial Ovarian Cancer.
Front Oncol. 2021 Feb 26;11:601512. doi: 10.3389/fonc.2021.601512. eCollection 2021.
7
MYC as a target for cancer treatment.
Cancer Treat Rev. 2021 Mar;94:102154. doi: 10.1016/j.ctrv.2021.102154. Epub 2021 Jan 19.
8
Ovarian Cancer Risk Variants Are Enriched in Histotype-Specific Enhancers and Disrupt Transcription Factor Binding Sites.
Am J Hum Genet. 2020 Oct 1;107(4):622-635. doi: 10.1016/j.ajhg.2020.08.021. Epub 2020 Sep 17.
9
PhenomeXcan: Mapping the genome to the phenome through the transcriptome.
Sci Adv. 2020 Sep 10;6(37). doi: 10.1126/sciadv.aba2083. Print 2020 Sep.
10
The GTEx Consortium atlas of genetic regulatory effects across human tissues.
Science. 2020 Sep 11;369(6509):1318-1330. doi: 10.1126/science.aaz1776.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验