Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Am J Hum Genet. 2024 Jun 6;111(6):1061-1083. doi: 10.1016/j.ajhg.2024.04.011. Epub 2024 May 8.
To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.
为了鉴定与上皮性卵巢癌(EOC)不同组织学类型相关的可信因果风险变异(CCVs),我们对 25981 例 EOC 病例和 105724 例欧洲裔对照中 470825 个已分型和 10163797 个已推断的 SNP 进行了全基因组关联分析。我们鉴定了五个组织学类型特异的 EOC 风险区域(p 值<5×10),并确认了 27 个风险区域的先前报道的关联。条件分析在六个风险区域中,除了主要信号外,还鉴定了另外 11 个独立的信号(p 值<10)。精细定位在这些区域中鉴定了 4008 个 CCVs,其中 1452 个 CCVs位于卵巢癌相关染色质标记中,在每个 EOC 组织学类型的活性增强子、活性启动子和活性区域中具有显著富集。在使用组织特异性和跨组织数据集的全转录组关联和共定位分析中,在已知的 EOC 风险区域中鉴定了 86 个候选易感性基因,在 23 个额外的基因组区域中鉴定了 32 个基因,这些基因可能代表新的 EOC 风险位点(错误发现率<0.05)。最后,通过整合全基因组 HiChIP 互作组分析与全转录组关联研究(TWAS)、变体效应预测器、转录因子 ChIP-seq 和 motifbreakR 数据,我们在每个位点鉴定了候选基因-CCV 相互作用。这包括 TWAS 鉴定出一个或多个候选易感性基因的风险位点(例如 2q31 上的 HOXD-AS2、HOXD8 和 HOXD3)和 TWAS 未鉴定出候选基因的其他位点(例如 8q24 上的 MYC 和 PVT1)。总之,本研究描述了一个功能框架,并提供了对全基因组关联研究鉴定的 EOC 易感性位点的风险等位基因和候选基因靶标生物学意义的更深入了解。