Suppr超能文献

嵌合抗原受体 T 细胞疗法治疗实体瘤的最新进展:未来是否更加美好?

State of the Art in CAR-T Cell Therapy for Solid Tumors: Is There a Sweeter Future?

机构信息

Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain.

Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.

出版信息

Cells. 2024 Apr 23;13(9):725. doi: 10.3390/cells13090725.

Abstract

Chimeric antigen receptor (CAR)-T cell therapy has proven to be a powerful treatment for hematological malignancies. The situation is very different in the case of solid tumors, for which no CAR-T-based therapy has yet been approved. There are many factors contributing to the absence of response in solid tumors to CAR-T cells, such as the immunosuppressive tumor microenvironment (TME), T cell exhaustion, or the lack of suitable antigen targets, which should have a stable and specific expression on tumor cells. Strategies being developed to improve CAR-T-based therapy for solid tumors include the use of new-generation CARs such as TRUCKs or bi-specific CARs, the combination of CAR therapy with chemo- or radiotherapy, the use of checkpoint inhibitors, and the use of oncolytic viruses. Furthermore, despite the scarcity of targets, a growing number of phase I/II clinical trials are exploring new solid-tumor-associated antigens. Most of these antigens are of a protein nature; however, there is a clear potential in identifying carbohydrate-type antigens associated with tumors, or carbohydrate and proteoglycan antigens that emerge because of aberrant glycosylations occurring in the context of tumor transformation.

摘要

嵌合抗原受体 (CAR)-T 细胞疗法已被证明是治疗血液系统恶性肿瘤的有效方法。然而,对于实体瘤,这种疗法的情况则完全不同,目前尚无基于 CAR-T 的疗法获得批准。导致 CAR-T 细胞对实体瘤无反应的因素有很多,例如免疫抑制性肿瘤微环境 (TME)、T 细胞耗竭或缺乏合适的抗原靶点,这些靶点应在肿瘤细胞上具有稳定和特异性的表达。为了提高 CAR-T 细胞疗法在实体瘤中的疗效,正在开发多种策略,包括使用新一代 CAR,如 TRUCKs 或双特异性 CAR;将 CAR 疗法与化疗或放疗相结合;使用检查点抑制剂;以及使用溶瘤病毒。此外,尽管靶点稀缺,但越来越多的 I/II 期临床试验正在探索新的实体瘤相关抗原。这些抗原大多数为蛋白质性质,但识别与肿瘤相关的碳水化合物型抗原,或识别由于肿瘤转化过程中发生异常糖基化而出现的碳水化合物和蛋白聚糖抗原,具有明显的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a74/11083689/8d5d21c1a677/cells-13-00725-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验