VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Zwijnaarde, Belgium.
Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
Brief Bioinform. 2024 Mar 27;25(3). doi: 10.1093/bib/bbae234.
In this review, we provide a comprehensive overview of the different computational tools that have been published for the deconvolution of bulk DNA methylation (DNAm) data. Here, deconvolution refers to the estimation of cell-type proportions that constitute a mixed sample. The paper reviews and compares 25 deconvolution methods (supervised, unsupervised or hybrid) developed between 2012 and 2023 and compares the strengths and limitations of each approach. Moreover, in this study, we describe the impact of the platform used for the generation of methylation data (including microarrays and sequencing), the applied data pre-processing steps and the used reference dataset on the deconvolution performance. Next to reference-based methods, we also examine methods that require only partial reference datasets or require no reference set at all. In this review, we provide guidelines for the use of specific methods dependent on the DNA methylation data type and data availability.
在这篇综述中,我们提供了一个全面的概述,介绍了已发表的用于解析批量 DNA 甲基化(DNAm)数据的不同计算工具。在这里,解析是指估计构成混合样本的细胞类型比例。本文回顾和比较了 2012 年至 2023 年间开发的 25 种去卷积方法(监督、无监督或混合),并比较了每种方法的优缺点。此外,在这项研究中,我们描述了用于生成甲基化数据的平台(包括微阵列和测序)、应用的数据预处理步骤以及使用的参考数据集对去卷积性能的影响。除了基于参考的方法外,我们还研究了仅需要部分参考数据集或根本不需要参考集的方法。在这篇综述中,我们根据 DNA 甲基化数据类型和数据可用性,为特定方法的使用提供了指导。