Suppr超能文献

纳米医学中的机制和障碍:该领域的进展和未来方向。

Mechanisms and Barriers in Nanomedicine: Progress in the Field and Future Directions.

机构信息

Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States.

Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States.

出版信息

ACS Nano. 2024 Jun 4;18(22):13983-13999. doi: 10.1021/acsnano.4c00182. Epub 2024 May 20.

Abstract

In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.

摘要

近年来,在合成和表征工程纳米粒子方面取得了稳步进展,已有几种已批准的药物和多个有前途的候选药物进入临床试验。食品和药物管理局和欧洲药品管理局等监管机构发布了重要的指导文件,促进了基于纳米粒子的药物产品的开发,特别是在脂质体和脂质载体方面。即使取得了这些进展,显然仍有许多障碍需要克服,以加速向临床应用的转化。在美国科罗拉多州 2023 年 5 月举行的“纳米医学中的机制和障碍”会议研讨会上,领先的专家们讨论了制剂、生理、免疫、监管、临床和教育方面的障碍。这份立场文件邀请资深教师、年轻研究人员和学生进行公开、无限制和非专有性的讨论,以激发推动该领域前进的想法和概念。

相似文献

1
Mechanisms and Barriers in Nanomedicine: Progress in the Field and Future Directions.
ACS Nano. 2024 Jun 4;18(22):13983-13999. doi: 10.1021/acsnano.4c00182. Epub 2024 May 20.
2
Mechanisms and Barriers in Cancer Nanomedicine: Addressing Challenges, Looking for Solutions.
ACS Nano. 2017 Jan 24;11(1):12-18. doi: 10.1021/acsnano.6b08244. Epub 2017 Jan 9.
3
Translational considerations in nanomedicine: The oncology perspective.
Adv Drug Deliv Rev. 2020;158:140-157. doi: 10.1016/j.addr.2020.05.012. Epub 2020 Jun 9.
5
Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors.
Acc Chem Res. 2019 Jul 16;52(7):1750-1760. doi: 10.1021/acs.accounts.9b00177. Epub 2019 Jun 25.
6
Integrating Nanotechnology into Cancer Care.
ACS Nano. 2019 Jul 23;13(7):7370-7376. doi: 10.1021/acsnano.9b04266. Epub 2019 Jun 26.
7
Combining Nanomedicine and Immunotherapy.
Acc Chem Res. 2019 Jun 18;52(6):1543-1554. doi: 10.1021/acs.accounts.9b00148. Epub 2019 May 23.
8
Anticancer Drug Delivery: An Update on Clinically Applied Nanotherapeutics.
Drugs. 2015 Sep;75(14):1601-11. doi: 10.1007/s40265-015-0453-3.
10
Nano-Medicine as a Newly Emerging Approach to Combat Human Immunodeficiency Virus (HIV).
Pharm Nanotechnol. 2018;6(1):17-27. doi: 10.2174/2211738506666180209095710.

引用本文的文献

1
Nano-enabled strategies for targeted immunotherapy in gastrointestinal cancers.
Front Immunol. 2025 Aug 14;16:1653829. doi: 10.3389/fimmu.2025.1653829. eCollection 2025.
2
Machine Learning-Enhanced Nanoparticle Design for Precision Cancer Drug Delivery.
Adv Sci (Weinh). 2025 Aug;12(30):e03138. doi: 10.1002/advs.202503138. Epub 2025 Jun 19.
3
Development of Chemical Tags for Universal Lipid Nanoparticle Visualization and Tracking in 2D and 3D Imaging.
Nano Lett. 2025 May 14;25(19):7682-7689. doi: 10.1021/acs.nanolett.5c00311. Epub 2025 May 4.
4
Design and Biodistribution of PEGylated Core-Shell X-ray Fluorescent Nanoparticle Contrast Agents.
ACS Appl Mater Interfaces. 2025 May 7;17(18):26338-26347. doi: 10.1021/acsami.5c01902. Epub 2025 Apr 23.
5
PEGylation technology: addressing concerns, moving forward.
Drug Deliv. 2025 Dec;32(1):2494775. doi: 10.1080/10717544.2025.2494775. Epub 2025 Apr 23.
7
Inorganic Nanomaterials Meet the Immune System: An Intricate Balance.
Adv Healthc Mater. 2025 Apr;14(11):e2404795. doi: 10.1002/adhm.202404795. Epub 2025 Mar 13.
8
Realizing the potential of nanomedicines to treat breast cancer liver metastasis.
Nanomedicine (Lond). 2025 May;20(10):1073-1076. doi: 10.1080/17435889.2025.2469491. Epub 2025 Feb 27.
9
Lactylation-Driven HECTD2 Limits the Response of Hepatocellular Carcinoma to Lenvatinib.
Adv Sci (Weinh). 2025 Apr;12(15):e2412559. doi: 10.1002/advs.202412559. Epub 2025 Feb 20.
10
Thirty years from FDA approval of pegylated liposomal doxorubicin (Doxil/Caelyx): an updated analysis and future perspective.
BMJ Oncol. 2025 Jan 9;4(1):e000573. doi: 10.1136/bmjonc-2024-000573. eCollection 2025.

本文引用的文献

1
Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 Mar-Apr;16(2):e1957. doi: 10.1002/wnan.1957.
2
The Blood-Brain Barrier: Implications for Experimental Cancer Therapeutics.
Annu Rev Cancer Biol. 2023 Apr;7:265-289. doi: 10.1146/annurev-cancerbio-061421-040433. Epub 2023 Jan 25.
3
PEGylated therapeutics in the clinic.
Bioeng Transl Med. 2023 Sep 22;9(1):e10600. doi: 10.1002/btm2.10600. eCollection 2024 Jan.
4
Characterization of the responses of brain macrophages to focused ultrasound-mediated blood-brain barrier opening.
Nat Biomed Eng. 2024 May;8(5):650-663. doi: 10.1038/s41551-023-01107-0. Epub 2023 Oct 19.
5
The mixing method used to formulate lipid nanoparticles affects mRNA delivery efficacy and organ tropism.
Eur J Pharm Biopharm. 2023 Nov;192:126-135. doi: 10.1016/j.ejpb.2023.10.006. Epub 2023 Oct 12.
6
Inhibition of acute complement responses towards bolus-injected nanoparticles using targeted short-circulating regulatory proteins.
Nat Nanotechnol. 2024 Feb;19(2):246-254. doi: 10.1038/s41565-023-01514-z. Epub 2023 Oct 5.
8
Age-associated disparity in phagocytic clearance affects the efficacy of cancer nanotherapeutics.
Nat Nanotechnol. 2024 Feb;19(2):255-263. doi: 10.1038/s41565-023-01502-3. Epub 2023 Sep 18.
9
Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines.
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2303567120. doi: 10.1073/pnas.2303567120. Epub 2023 Aug 9.
10
Machine learning instructed microfluidic synthesis of curcumin-loaded liposomes.
Biomed Microdevices. 2023 Aug 5;25(3):29. doi: 10.1007/s10544-023-00671-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验