Barrett Craig F, Pace Matthew C, Corbett Cameron W, Kennedy Aaron H, Thixton-Nolan Hana L, Freudenstein John V
Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
New York Botanical Garden, Bronx, New York, NY 10458, USA.
Ann Bot. 2024 Dec 31;134(7):1207-1228. doi: 10.1093/aob/mcae084.
Heterotrophic plants have long been a challenge for systematists, exemplified by the base of the orchid subfamily Epidendroideae, which contains numerous mycoheterotrophic species.
Here we address the utility of organellar genomes in resolving relationships at the epidendroid base, specifically employing models of heterotachy, or lineage-specific rate variation over time. We further conduct comparative analyses of plastid genome evolution in heterotrophs and structural variation in matK.
We present the first complete plastid genomes (plastomes) of Wullschlaegelia, the sole genus of the tribe Wullschlaegelieae, revealing a highly reduced genome of 37 kb, which retains a fraction of the genes present in related autotrophs. Plastid phylogenomic analyses recovered a strongly supported clade composed exclusively of mycoheterotrophic species with long branches. We further analysed mitochondrial gene sets, which recovered similar relationships to those in other studies using nuclear data, but the placement of Wullschlaegelia remains uncertain. We conducted comparative plastome analyses among Wullschlaegelia and other heterotrophic orchids, revealing a suite of correlated substitutional and structural changes relative to autotrophic species. Lastly, we investigated evolutionary and structural variation in matK, which is retained in Wullschlaegelia and a few other 'late stage' heterotrophs and found evidence for structural conservation despite rapid substitution rates in both Wullschlaegelia and the leafless Gastrodia.
Our analyses reveal the limits of what the plastid genome can tell us on orchid relationships in this part of the tree, even when applying parameter-rich heterotachy models. Our study underscores the need for increased taxon sampling across all three genomes at the epidendroid base, and illustrates the need for further research on addressing heterotachy in phylogenomic analyses.
异养植物长期以来一直是系统分类学家面临的挑战,以兰科树兰亚科的基部为例,该亚科包含众多菌异养物种。
在此,我们探讨细胞器基因组在解析树兰亚科基部关系方面的效用,特别采用了异速进化模型,即谱系特异性速率随时间的变化。我们进一步对异养植物的质体基因组进化和matK的结构变异进行了比较分析。
我们展示了Wullschlaegelieae族唯一属Wullschlaegelia的首个完整质体基因组(质体基因组),揭示了一个高度简化的37 kb基因组,该基因组保留了相关自养植物中部分基因。质体系统发育基因组分析恢复了一个得到有力支持的分支,该分支仅由具有长分支的菌异养物种组成。我们进一步分析了线粒体基因集,其恢复的关系与其他使用核数据的研究相似,但Wullschlaegelia的位置仍不确定。我们对Wullschlaegelia和其他异养兰花进行了质体基因组比较分析,揭示了一系列相对于自养物种的相关替代和结构变化。最后,我们研究了Wullschlaegelia和其他一些“晚期”异养植物中保留的matK的进化和结构变异,发现尽管Wullschlaegelia和无叶的天麻属植物的替代率很快,但仍有结构保守的证据。
我们的分析揭示了即使应用参数丰富的异速进化模型,质体基因组在这部分树状图中关于兰花关系方面能告诉我们的内容的局限性。我们的研究强调了在树兰亚科基部增加对所有三个基因组的分类群采样的必要性,并说明了在系统发育基因组分析中进一步研究解决异速进化问题的必要性。