Suppr超能文献

基于机器学习的免疫衰老指数预测皮肤黑色素瘤患者的预后和药物敏感性。

Machine learning-derived immunosenescence index for predicting outcome and drug sensitivity in patients with skin cutaneous melanoma.

机构信息

Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.

Traditional Chinese Medicine department, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.

出版信息

Genes Immun. 2024 Jun;25(3):219-231. doi: 10.1038/s41435-024-00278-3. Epub 2024 May 29.

Abstract

The functions of immunosenescence are closely related to skin cutaneous melanoma (SKCM). The aim of this study is to uncover the characteristics of immunosenescence index (ISI) to identify novel biomarkers and potential targets for treatment. Firstly, integrated bioinformatics analysis was carried out to identify risk prognostic genes, and their expression and prognostic value were evaluated. Then, we used the computational algorithm to estimate ISI. Finally, the distribution characteristics and clinical significance of ISI in SKCM by using multi-omics analysis. Patients with a lower ISI had a favorable survival rate, lower chromosomal instability, lower somatic copy-number alterations, lower somatic mutations, higher immune infiltration, and sensitive to immunotherapy. The ISI exhibited robust, which was validated in multiple datasets. Besides, the ISI is more effective than other published signatures in predicting survival outcomes for patients with SKCM. Single-cell analysis revealed higher ISI was specifically expressed in monocytes, and correlates with the differentiation fate of monocytes in SKCM. Besides, individuals exhibiting elevated ISI levels could potentially receive advantages from chemotherapy, and promising compounds with the potential to target high ISI were recognized. The ISI model is a valuable tool in categorizing SKCM patients based on their prognosis, gene mutation signatures, and response to immunotherapy.

摘要

免疫衰老的功能与皮肤黑色素瘤(SKCM)密切相关。本研究旨在揭示免疫衰老指数(ISI)的特征,以鉴定新的生物标志物和潜在的治疗靶点。首先,进行了综合的生物信息学分析,以确定风险预后基因,并评估其表达和预后价值。然后,我们使用计算算法来估计 ISI。最后,通过多组学分析研究 ISI 在 SKCM 中的分布特征和临床意义。具有较低 ISI 的患者具有较好的生存率、较低的染色体不稳定性、较低的体细胞拷贝数改变、较低的体细胞突变、较高的免疫浸润,并且对免疫治疗敏感。ISI 表现出较强的稳健性,在多个数据集得到了验证。此外,ISI 在预测 SKCM 患者的生存结果方面比其他已发表的标志物更有效。单细胞分析表明,较高的 ISI 特异性表达在单核细胞中,并与 SKCM 中单核细胞的分化命运相关。此外,具有升高的 ISI 水平的个体可能受益于化疗,并识别出具有靶向高 ISI 潜力的有前途的化合物。ISI 模型是根据 SKCM 患者的预后、基因突变特征和对免疫治疗的反应对其进行分类的有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验