Do Brian T, Hsu Peggy P, Vermeulen Sidney Y, Wang Zhishan, Hirz Taghreed, Abbott Keene L, Aziz Najihah, Replogle Joseph M, Bjelosevic Stefan, Paolino Jonathan, Nelson Samantha A, Block Samuel, Darnell Alicia M, Ferreira Raphael, Zhang Hanyu, Milosevic Jelena, Schmidt Daniel R, Chidley Christopher, Harris Isaac S, Weissman Jonathan S, Pikman Yana, Stegmaier Kimberly, Cheloufi Sihem, Su Xiaofeng A, Sykes David B, Vander Heiden Matthew G
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA; Rogel Cancer Center and Division of Hematology and Oncology, Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
Dev Cell. 2024 Aug 19;59(16):2203-2221.e15. doi: 10.1016/j.devcel.2024.05.010. Epub 2024 May 31.
Control of cellular identity requires coordination of developmental programs with environmental factors such as nutrient availability, suggesting that perturbing metabolism can alter cell state. Here, we find that nucleotide depletion and DNA replication stress drive differentiation in human and murine normal and transformed hematopoietic systems, including patient-derived acute myeloid leukemia (AML) xenografts. These cell state transitions begin during S phase and are independent of ATR/ATM checkpoint signaling, double-stranded DNA break formation, and changes in cell cycle length. In systems where differentiation is blocked by oncogenic transcription factor expression, replication stress activates primed regulatory loci and induces lineage-appropriate maturation genes despite the persistence of progenitor programs. Altering the baseline cell state by manipulating transcription factor expression causes replication stress to induce genes specific for alternative lineages. The ability of replication stress to selectively activate primed maturation programs across different contexts suggests a general mechanism by which changes in metabolism can promote lineage-appropriate cell state transitions.
细胞身份的控制需要发育程序与营养可用性等环境因素相协调,这表明扰乱新陈代谢会改变细胞状态。在这里,我们发现核苷酸耗竭和DNA复制应激在人类和小鼠的正常及转化造血系统中驱动分化,包括患者来源的急性髓系白血病(AML)异种移植。这些细胞状态转变始于S期,且独立于ATR/ATM检查点信号、双链DNA断裂形成以及细胞周期长度的变化。在分化被致癌转录因子表达阻断的系统中,尽管祖细胞程序持续存在,但复制应激会激活启动的调控位点并诱导谱系特异性成熟基因。通过操纵转录因子表达来改变基线细胞状态会使复制应激诱导特定于替代谱系的基因。复制应激在不同背景下选择性激活启动的成熟程序的能力表明了一种普遍机制,通过该机制,新陈代谢的变化可以促进谱系适当的细胞状态转变。