Suppr超能文献

核苷酸代谢在癌症中的新兴作用。

Emerging roles of nucleotide metabolism in cancer.

机构信息

Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.

Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Trends Cancer. 2023 Aug;9(8):624-635. doi: 10.1016/j.trecan.2023.04.008. Epub 2023 May 10.

Abstract

Nucleotides are substrates for multiple anabolic pathways, most notably DNA and RNA synthesis. Since nucleotide synthesis inhibitors began to be used for cancer therapy in the 1950s, our understanding of how nucleotides function in tumor cells has evolved, prompting a resurgence of interest in targeting nucleotide metabolism for cancer therapy. In this review, we discuss recent advances that challenge the idea that nucleotides are mere building blocks for the genome and transcriptome and highlight ways that these metabolites support oncogenic signaling, stress resistance, and energy homeostasis in tumor cells. These findings point to a rich network of processes sustained by aberrant nucleotide metabolism in cancer and reveal new therapeutic opportunities.

摘要

核苷酸是多种合成代谢途径的底物,其中最重要的是 DNA 和 RNA 的合成。自 20 世纪 50 年代核苷酸合成抑制剂开始用于癌症治疗以来,我们对核苷酸在肿瘤细胞中的功能的认识不断发展,这促使人们重新关注以核苷酸代谢为靶点的癌症治疗。在这篇综述中,我们讨论了最近的进展,这些进展挑战了核苷酸仅仅是基因组和转录组的构建模块的观点,并强调了这些代谢物如何支持肿瘤细胞中的致癌信号、应激抵抗和能量平衡。这些发现指出了癌症中异常核苷酸代谢所维持的丰富的过程网络,并揭示了新的治疗机会。

相似文献

1
Emerging roles of nucleotide metabolism in cancer.
Trends Cancer. 2023 Aug;9(8):624-635. doi: 10.1016/j.trecan.2023.04.008. Epub 2023 May 10.
2
Nucleotide metabolism: a pan-cancer metabolic dependency.
Nat Rev Cancer. 2023 May;23(5):275-294. doi: 10.1038/s41568-023-00557-7. Epub 2023 Mar 27.
3
Microsporidia: Why Make Nucleotides if You Can Steal Them?
PLoS Pathog. 2016 Nov 17;12(11):e1005870. doi: 10.1371/journal.ppat.1005870. eCollection 2016 Nov.
4
Dysregulation of de novo nucleotide biosynthetic pathway enzymes in cancer and targeting opportunities.
Cancer Lett. 2020 Feb 1;470:134-140. doi: 10.1016/j.canlet.2019.11.013. Epub 2019 Nov 13.
5
One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy.
Oncotarget. 2017 Apr 4;8(14):23955-23977. doi: 10.18632/oncotarget.15053.
6
Nucleic acids, purines, pyrimidines (nucleotide synthesis).
Annu Rev Biochem. 1959;28:365-410. doi: 10.1146/annurev.bi.28.070159.002053.
7
The Intersection of Purine and Mitochondrial Metabolism in Cancer.
Cells. 2021 Sep 30;10(10):2603. doi: 10.3390/cells10102603.
9
Rethinking our approach to cancer metabolism to deliver patient benefit.
Br J Cancer. 2023 Aug;129(3):406-415. doi: 10.1038/s41416-023-02324-9. Epub 2023 Jun 21.
10
Liquid chromatographic methods for the determination of endogenous nucleotides and nucleotide analogs used in cancer therapy: a review.
J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Jul 15;878(22):1912-28. doi: 10.1016/j.jchromb.2010.05.016. Epub 2010 May 24.

引用本文的文献

1
Comprehensive profiling of the catalytic conformations of human Guanylate kinase.
Nat Commun. 2025 Jul 25;16(1):6859. doi: 10.1038/s41467-025-61732-y.
2
Metabolic hallmarks of trastuzumab resistance.
Expert Opin Ther Targets. 2025 Jul;29(7):457-479. doi: 10.1080/14728222.2025.2532394. Epub 2025 Jul 16.
3
Galectin-3 in tumor-stromal cells enhances gemcitabine resistance in pancreatic adenocarcinoma by suppressing oxidative phosphorylation.
Genes Dis. 2025 May 29;12(5):101702. doi: 10.1016/j.gendis.2025.101702. eCollection 2025 Sep.
5
Cleavage of CAD by caspase-3 determines the cancer cell fate during chemotherapy.
Nat Commun. 2025 May 30;16(1):5006. doi: 10.1038/s41467-025-60144-2.
7
Reprogramming of Thyroid Cancer Metabolism: from Mechanism to Therapeutic Strategy.
Mol Cancer. 2025 Mar 11;24(1):74. doi: 10.1186/s12943-025-02263-4.
8
Erianin inhibits the proliferation of lung cancer cells by suppressing mTOR activation and disrupting pyrimidine metabolism.
Cancer Biol Med. 2025 Feb 24;22(2):144-65. doi: 10.20892/j.issn.2095-3941.2024.0385.
10
Metabolic shifts in glioblastoma: unraveling altered pathways and exploring novel therapeutic avenues.
Mol Biol Rep. 2025 Jan 22;52(1):146. doi: 10.1007/s11033-025-10242-7.

本文引用的文献

1
Nucleotide depletion promotes cell fate transitions by inducing DNA replication stress.
Dev Cell. 2024 Aug 19;59(16):2203-2221.e15. doi: 10.1016/j.devcel.2024.05.010. Epub 2024 May 31.
2
Oncogenic IDH mutations increase heterochromatin-related replication stress without impacting homologous recombination.
Mol Cell. 2023 Jul 6;83(13):2347-2356.e8. doi: 10.1016/j.molcel.2023.05.026. Epub 2023 Jun 12.
3
Allosteric regulation of CAD modulates de novo pyrimidine synthesis during the cell cycle.
Nat Metab. 2023 Feb;5(2):277-293. doi: 10.1038/s42255-023-00735-9. Epub 2023 Feb 6.
4
Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer.
Cancer Cell. 2023 Jan 9;41(1):124-138.e6. doi: 10.1016/j.ccell.2022.11.013. Epub 2022 Dec 22.
5
Cancer-selective metabolic vulnerabilities in MYC-amplified medulloblastoma.
Cancer Cell. 2022 Dec 12;40(12):1488-1502.e7. doi: 10.1016/j.ccell.2022.10.009. Epub 2022 Nov 10.
7
De novo pyrimidine synthesis is a targetable vulnerability in IDH mutant glioma.
Cancer Cell. 2022 Sep 12;40(9):939-956.e16. doi: 10.1016/j.ccell.2022.07.011. Epub 2022 Aug 18.
8
A druggable addiction to de novo pyrimidine biosynthesis in diffuse midline glioma.
Cancer Cell. 2022 Sep 12;40(9):957-972.e10. doi: 10.1016/j.ccell.2022.07.012. Epub 2022 Aug 18.
10
DHODH is an independent prognostic marker and potent therapeutic target in neuroblastoma.
JCI Insight. 2022 Aug 9;7(17):e153836. doi: 10.1172/jci.insight.153836.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验