Rollins Zachary A, Curtis Matthew B, George Steven C, Faller Roland
Department of Chemical Engineering, University of California, Davis, 1 Shields Ave, Bainer Hall, Davis, CA, 95616, USA.
Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Dr., GBSF 2303, Davis, CA, 95616, USA.
Macromol Rapid Commun. 2024 Dec;45(24):e2400225. doi: 10.1002/marc.202400225. Epub 2024 Jun 12.
T cell receptor (TCR) recognition of a peptide-major histocompatibility complex (pMHC) is crucial for adaptive immune response. The identification of therapeutically relevant TCR-pMHC protein pairs is a bottleneck in the implementation of TCR-based immunotherapies. The ability to computationally design TCRs to target a specific pMHC requires automated integration of next-generation sequencing, protein-protein structure prediction, molecular dynamics, and TCR ranking. A pipeline to evaluate patient-specific, sequence-based TCRs to a target pMHC is presented. Using the three most frequently expressed TCRs from 16 colorectal cancer patients, the protein-protein structure of the TCRs to the target CEA peptide-MHC is predicted using Modeller and ColabFold. TCR-pMHC structures are compared using automated equilibration and successive analysis. ColabFold generated configurations require an ≈2.5× reduction in equilibration time of TCR-pMHC structures compared to Modeller. The structural differences between Modeller and ColabFold are demonstrated by root mean square deviation (≈0.20 nm) between clusters of equilibrated configurations, which impact the number of hydrogen bonds and Lennard-Jones contacts between the TCR and pMHC. TCR ranking criteria that may prioritize TCRs for evaluation of in vitro immunogenicity are identified, and this ranking is validated by comparing to state-of-the-art machine learning-based methods trained to predict the probability of TCR-pMHC binding.
T细胞受体(TCR)对肽-主要组织相容性复合体(pMHC)的识别对于适应性免疫反应至关重要。识别具有治疗相关性的TCR-pMHC蛋白对是基于TCR的免疫疗法实施过程中的一个瓶颈。通过计算设计靶向特定pMHC的TCR的能力需要将下一代测序、蛋白质-蛋白质结构预测、分子动力学和TCR排序进行自动化整合。本文介绍了一种评估针对目标pMHC的患者特异性、基于序列的TCR的流程。使用来自16名结直肠癌患者中最常表达的三种TCR,利用Modeller和ColabFold预测TCR与目标癌胚抗原(CEA)肽-MHC的蛋白质-蛋白质结构。使用自动平衡和连续分析比较TCR-pMHC结构。与Modeller相比,ColabFold生成的构型使TCR-pMHC结构的平衡时间减少了约2.5倍。通过平衡构型簇之间的均方根偏差(约0.20 nm)证明了Modeller和ColabFold之间的结构差异,这影响了TCR与pMHC之间氢键和 Lennard-Jones接触的数量。确定了可能优先选择TCR进行体外免疫原性评估的TCR排序标准,并通过与训练用于预测TCR-pMHC结合概率的基于机器学习的先进方法进行比较来验证该排序。