Suppr超能文献

通过构建计算流程来研究未鉴定表位的TCR的TCR-pMHC相互作用。

Investigating TCR-pMHC interactions for TCRs without identified epitopes by constructing a computational pipeline.

作者信息

Song Kaiyuan, Xu Honglin, Shi Yi, Zou Xin, Da Lin-Tai, Hao Jie

机构信息

Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.

School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Int J Biol Macromol. 2024 Dec;282(Pt 1):136502. doi: 10.1016/j.ijbiomac.2024.136502. Epub 2024 Oct 18.

Abstract

The molecular mechanisms underlying epitope recognition by T cell receptors (TCRs) are critical for activating T cell immune responses and rationally designing TCR-based therapeutics. Single-cell sequencing techniques vastly boost the accumulation of TCR sequences, while the limitation of available TCR-pMHC structures hampers further investigations. In this study, we proposed a computational pipeline that incorporates structural information and single-cell sequencing data to investigate the epitope-recognition mechanisms for TCRs without identified epitopes. By antigen specificity clustering, we mapped the epitope sequences between epitope-known and epitope-unknown TCRs from COVID-19 patients. One reported SARS-CoV-2 epitope, NQKLIANQF (S), was identified for a TCR expressed by 614 T cells (TCR-614). Epitope screening also identified a potential cross-reactive epitope, KLKTLVATA (NSP3), for a TCR expressed by 204 T cells (TCR-204). By molecular dynamics (MD) simulations, we revealed the detailed epitope-recognition mechanisms for both TCRs. The structural motifs responsible for epitope recognition revealed by the MD simulations are consistent with the sequential features recognized by the sequence-based clustering method. We hope that this strategy could facilitate the discovery and optimization of TCR-based therapeutics.

摘要

T细胞受体(TCR)识别表位的分子机制对于激活T细胞免疫反应以及合理设计基于TCR的疗法至关重要。单细胞测序技术极大地促进了TCR序列的积累,而可用的TCR-pMHC结构的局限性阻碍了进一步的研究。在本研究中,我们提出了一种计算流程,该流程整合了结构信息和单细胞测序数据,以研究未识别表位的TCR的表位识别机制。通过抗原特异性聚类,我们绘制了新冠患者中已知表位和未知表位的TCR之间的表位序列。一个已报道的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)表位NQKLIANQF(S)被确定为614个T细胞表达的一种TCR(TCR-614)所识别。表位筛选还为204个T细胞表达的一种TCR(TCR-204)确定了一个潜在的交叉反应表位KLKTLVATA(NSP3)。通过分子动力学(MD)模拟,我们揭示了这两种TCR详细的表位识别机制。MD模拟揭示的负责表位识别的结构基序与基于序列的聚类方法识别的序列特征一致。我们希望这种策略能够促进基于TCR的疗法的发现和优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验