Suppr超能文献

庆祝 AMPA 受体纳米域的生日:用 10 个纳米烛照亮兴奋性突触的纳米尺度组织。

Celebrating the Birthday of AMPA Receptor Nanodomains: Illuminating the Nanoscale Organization of Excitatory Synapses with 10 Nanocandles.

机构信息

Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.

Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.

出版信息

J Neurosci. 2024 Jun 5;44(23):e2104232024. doi: 10.1523/JNEUROSCI.2104-23.2024.

Abstract

A decade ago, in 2013, and over the course of 4 summer months, three separate observations were reported that each shed light independently on a new molecular organization that fundamentally reshaped our perception of excitatory synaptic transmission (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This discovery unveiled an intricate arrangement of AMPA-type glutamate receptors and their principal scaffolding protein PSD-95, at synapses. This breakthrough was made possible, thanks to advanced super-resolution imaging techniques. It fundamentally changed our understanding of excitatory synaptic architecture and paved the way for a brand-new area of research. In this Progressions article, the primary investigators of the nanoscale organization of synapses have come together to chronicle the tale of their discovery. We recount the initial inquiry that prompted our research, the preceding studies that inspired our work, the technical obstacles that were encountered, and the breakthroughs that were made in the subsequent decade in the realm of nanoscale synaptic transmission. We review the new discoveries made possible by the democratization of super-resolution imaging techniques in the field of excitatory synaptic physiology and architecture, first by the extension to other glutamate receptors and to presynaptic proteins and then by the notion of trans-synaptic organization. After describing the organizational modifications occurring in various pathologies, we discuss briefly the latest technical developments made possible by super-resolution imaging and emerging concepts in synaptic physiology.

摘要

十年前,也就是 2013 年,在四个夏季的时间里,有三项独立的观察结果分别报道,这三项观察结果独立地揭示了一种新的分子组织,从根本上改变了我们对兴奋性突触传递的认识(Fukata 等人,2013;MacGillavry 等人,2013;Nair 等人,2013)。这一发现揭示了在突触处 AMPA 型谷氨酸受体及其主要支架蛋白 PSD-95 的复杂排列。这一突破得益于先进的超分辨率成像技术。它从根本上改变了我们对兴奋性突触结构的理解,为一个全新的研究领域铺平了道路。在这篇进展文章中,突触纳米结构的主要研究人员齐聚一堂,讲述了他们发现的故事。我们叙述了促使我们进行研究的最初探究,启发我们工作的前期研究,遇到的技术障碍,以及在随后的十年中在纳米级突触传递领域取得的突破。我们回顾了超分辨率成像技术在兴奋性突触生理学和结构领域普及所带来的新发现,首先是扩展到其他谷氨酸受体和突触前蛋白,然后是跨突触组织的概念。在描述了各种病变中发生的组织变化之后,我们简要讨论了超分辨率成像和突触生理学中新兴概念所带来的最新技术发展。

相似文献

3
AMPA receptor nanoscale dynamic organization and synaptic plasticities.
Curr Opin Neurobiol. 2020 Aug;63:137-145. doi: 10.1016/j.conb.2020.04.003. Epub 2020 May 13.
5
Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
J Neurochem. 2005 Sep;94(6):1728-38. doi: 10.1111/j.1471-4159.2005.03334.x. Epub 2005 Jul 25.
7
Role of AMPA receptors in synaptic plasticity.
Cell Tissue Res. 2006 Nov;326(2):447-55. doi: 10.1007/s00441-006-0275-4. Epub 2006 Aug 1.
8
N-terminal SAP97 isoforms differentially regulate synaptic structure and postsynaptic surface pools of AMPA receptors.
Hippocampus. 2017 Jun;27(6):668-682. doi: 10.1002/hipo.22723. Epub 2017 Mar 20.
9
Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors.
Neuron. 2013 May 22;78(4):615-22. doi: 10.1016/j.neuron.2013.03.009.
10
Plasticity of postsynaptic nanostructure.
Mol Cell Neurosci. 2023 Mar;124:103819. doi: 10.1016/j.mcn.2023.103819. Epub 2023 Jan 30.

引用本文的文献

1
Biochemistry and physiology of voltage-gated calcium channel trafficking: a target for gabapentinoid drugs.
Open Biol. 2025 Jul;15(7):250013. doi: 10.1098/rsob.250013. Epub 2025 Jul 16.
2
Release your inhibitions: The cell biology of GABAergic postsynaptic plasticity.
Curr Opin Neurobiol. 2025 Feb;90:102952. doi: 10.1016/j.conb.2024.102952. Epub 2024 Dec 25.
3
Neuronal plasticity and its role in Alzheimer's disease and Parkinson's disease.
Neural Regen Res. 2024 Dec 16;21(1):107-25. doi: 10.4103/NRR.NRR-D-24-01019.

本文引用的文献

1
Transsynaptic Assemblies Link Domains of Presynaptic and Postsynaptic Intracellular Structures across the Synaptic Cleft.
J Neurosci. 2023 Aug 16;43(33):5883-5892. doi: 10.1523/JNEUROSCI.2195-22.2023. Epub 2023 Jun 27.
2
mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function.
Nat Commun. 2023 Jan 16;14(1):244. doi: 10.1038/s41467-022-35680-w.
3
Ion-channel degeneracy and heterogeneities in the emergence of complex spike bursts in CA3 pyramidal neurons.
J Physiol. 2023 Aug;601(15):3297-3328. doi: 10.1113/JP283539. Epub 2022 Oct 23.
4
In vivo nanoscopic landscape of neurexin ligands underlying anterograde synapse specification.
Neuron. 2022 Oct 5;110(19):3168-3185.e8. doi: 10.1016/j.neuron.2022.07.027. Epub 2022 Aug 24.
5
6
Nanoscale regulation of Ca dependent phase transitions and real-time dynamics of SAP97/hDLG.
Nat Commun. 2022 Jul 22;13(1):4236. doi: 10.1038/s41467-022-31912-1.
8
Subsynaptic mobility of presynaptic mGluR types is differentially regulated by intra- and extracellular interactions.
Mol Biol Cell. 2022 Jul 1;33(8):ar66. doi: 10.1091/mbc.E21-10-0484. Epub 2022 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验