School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Airport Bypass Road, Gandhinagar, Bhopal 462033, India.
Department of Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States.
J Phys Chem B. 2024 Jun 27;128(25):6049-6058. doi: 10.1021/acs.jpcb.4c02387. Epub 2024 Jun 6.
Lasioglossin-III (LL-III) is a potent broad-spectrum antimicrobial peptide used in diverse antimicrobial applications. In this work, coarse-grained and all-atom molecular dynamics simulation strategies were used in tandem to interpret the molecular mechanisms involved in the interfacial dynamics of LL-III and its recombinant variants during interactions with diverse cell membrane systems. Our results indicate that the membrane charges act as the driving force for initiating the membrane-peptide interactions, while the hydrophobic or van der Waals forces help to reinforce the membrane-peptide bindings. The optimized charge-hydrophobicity ratio of the LL-III peptides helps ensure their high specificity toward bacterial membranes compared to mammalian membrane systems, which also helps explain our experimental observations. Overall, we hope that our work gives new insight into the antimicrobial action of LL-III peptides and that the adopted simulation strategy will help other scientists and engineers extract maximal information from complex molecular simulations using minimal computational power.
丝氨酸三肽-III (LL-III) 是一种具有广谱抗菌活性的肽类物质,被广泛应用于各种抗菌领域。在这项工作中,我们采用粗粒化和全原子分子动力学模拟策略,对 LL-III 及其重组变体与不同细胞膜系统相互作用过程中的界面动力学相关的分子机制进行了深入的研究。研究结果表明,细胞膜电荷是引发膜-肽相互作用的驱动力,而疏水性或范德华力有助于增强膜-肽的结合。优化后的 LL-III 肽的荷质比有助于确保其对细菌膜的高特异性,而不是像哺乳动物膜系统那样,这也有助于解释我们的实验观察结果。总的来说,我们希望我们的工作能够为 LL-III 肽的抗菌作用提供新的见解,并且所采用的模拟策略将有助于其他科学家和工程师利用最小的计算能力从复杂的分子模拟中提取最大的信息。