Suppr超能文献

探索细胞衍生囊泡作为基因编辑有效载荷瞬时传递载体的潜力。

Exploring the potential of cell-derived vesicles for transient delivery of gene editing payloads.

机构信息

CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal.

CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA.

出版信息

Adv Drug Deliv Rev. 2024 Aug;211:115346. doi: 10.1016/j.addr.2024.115346. Epub 2024 Jun 6.

Abstract

Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. While gene editing tools continue to be improved to increase their precision and efficiency, the limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery vehicle should be able to target a sufficient number of diseased cells in a transient time window to maximize on-target editing and mitigate off-target events and immunogenicity. Here, we review major advances in novel delivery platforms based on cell-derived vesicles - extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and safety concerns of cell-derived vesicles delivery of gene editing cargos and their potential for clinical translation.

摘要

基因编辑技术有潜力通过修改、插入或删除特定的 DNA 序列或基因来纠正遗传疾病,为一类新的基因治疗铺平了道路。虽然基因编辑工具在不断改进以提高其精度和效率,但体内传递的有限功效仍然是临床应用的主要障碍。理想的传递载体应该能够在短暂的时间窗口内靶向足够数量的病变细胞,以最大限度地提高靶编辑效率,并减轻脱靶事件和免疫原性。在这里,我们综述了基于细胞衍生囊泡(细胞外囊泡和类病毒颗粒)的新型传递平台的主要进展,用于基因编辑有效载荷的瞬时传递。我们讨论了关于细胞衍生囊泡传递基因编辑货物的包装、体内生物分布、治疗效果和安全性问题的主要发现,以及它们在临床转化方面的潜力。

相似文献

1
Exploring the potential of cell-derived vesicles for transient delivery of gene editing payloads.
Adv Drug Deliv Rev. 2024 Aug;211:115346. doi: 10.1016/j.addr.2024.115346. Epub 2024 Jun 6.
2
Biomaterial-assisted targeted and controlled delivery of CRISPR/Cas9 for precise gene editing.
Biomater Sci. 2023 May 30;11(11):3762-3783. doi: 10.1039/d2bm01636b.
3
Small extracellular vesicles (sEVs)-based gene delivery platform for cell-specific CRISPR/Cas9 genome editing.
Theranostics. 2024 Apr 28;14(7):2777-2793. doi: 10.7150/thno.92133. eCollection 2024.
4
Exosomes as Targeted Delivery Platform of CRISPR/Cas9 for Therapeutic Genome Editing.
Chembiochem. 2021 Dec 10;22(24):3360-3368. doi: 10.1002/cbic.202100359. Epub 2021 Sep 12.
5
Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges.
Expert Opin Drug Deliv. 2018 Sep;15(9):905-913. doi: 10.1080/17425247.2018.1517746. Epub 2018 Sep 12.
6
CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles.
Int J Mol Sci. 2021 Jun 4;22(11):6072. doi: 10.3390/ijms22116072.
7
New Therapeutics for Extracellular Vesicles: Delivering CRISPR for Cancer Treatment.
Int J Mol Sci. 2022 Dec 12;23(24):15758. doi: 10.3390/ijms232415758.
8
Engineering extracellular vesicles to deliver CRISPR ribonucleoprotein for gene editing.
J Extracell Vesicles. 2023 Sep;12(9):e12343. doi: 10.1002/jev2.12343.
9
Recent Advances in CRISPR/Cas9 Delivery Strategies.
Biomolecules. 2020 May 30;10(6):839. doi: 10.3390/biom10060839.
10
Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics.
AAPS J. 2018 Oct 10;20(6):108. doi: 10.1208/s12248-018-0267-9.

引用本文的文献

1
3
Nucleic acid nanobiosystems for cancer theranostics: an overview of emerging trends and challenges.
Nanomedicine (Lond). 2025 Jun;20(11):1281-1298. doi: 10.1080/17435889.2025.2501919. Epub 2025 May 6.
4
Non-invasive detection of allele-specific CRISPR-SaCas9-KKH disruption of DYT1 allele in a xenograft mouse model.
Mol Ther Nucleic Acids. 2025 Jan 28;36(1):102466. doi: 10.1016/j.omtn.2025.102466. eCollection 2025 Mar 11.
5
Investigating the kinetics of single-chain expansion upon release in theta conditions.
Sci Rep. 2025 Mar 5;15(1):7773. doi: 10.1038/s41598-025-90891-7.
6
CRISPR targeting of mmu-miR-21a through a single adeno-associated virus vector prolongs survival of glioblastoma-bearing mice.
Mol Ther. 2025 Jan 8;33(1):133-151. doi: 10.1016/j.ymthe.2024.11.023. Epub 2024 Nov 19.

本文引用的文献

2
Large-scale production of extracellular vesicles: Report on the "massivEVs" ISEV workshop.
J Extracell Biol. 2022 Oct 25;1(10):e63. doi: 10.1002/jex2.63. eCollection 2022 Oct.
3
Antibody-displaying extracellular vesicles for targeted cancer therapy.
Nat Biomed Eng. 2024 Nov;8(11):1453-1468. doi: 10.1038/s41551-024-01214-6. Epub 2024 May 20.
4
Thiophene-based lipids for mRNA delivery to pulmonary and retinal tissues.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2307813120. doi: 10.1073/pnas.2307813120. Epub 2024 Mar 4.
5
Endosomal escape: A bottleneck for LNP-mediated therapeutics.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2307800120. doi: 10.1073/pnas.2307800120. Epub 2024 Mar 4.
6
Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2307801120. doi: 10.1073/pnas.2307801120. Epub 2024 Mar 4.
7
8
Predictive High-Throughput Platform for Dual Screening of mRNA Lipid Nanoparticle Blood-Brain Barrier Transfection and Crossing.
Nano Lett. 2024 Feb 7;24(5):1477-1486. doi: 10.1021/acs.nanolett.3c03509. Epub 2024 Jan 23.
9
Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo.
Nat Biotechnol. 2024 Oct;42(10):1526-1537. doi: 10.1038/s41587-023-02078-y. Epub 2024 Jan 8.
10
Immune response to the components of lipid nanoparticles for ribonucleic acid therapeutics.
Curr Opin Biotechnol. 2024 Feb;85:103049. doi: 10.1016/j.copbio.2023.103049. Epub 2023 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验