Soylemez Ummu Gulsum, Yousef Malik, Kesmen Zulal, Bakir-Gungor Burcu
IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):1656-1666. doi: 10.1109/TCBB.2024.3413021. Epub 2024 Dec 10.
Antimicrobial peptides (AMPs) have drawn the interest of the researchers since they offer an alternative to the traditional antibiotics in the fight against antibiotic resistance and they exhibit additional pharmaceutically significant properties. Recently, computational approaches attemp to reveal how antibacterial activity is determined from a machine learning perspective and they aim to search and find the biological cues or characteristics that control antimicrobial activity via incorporating motif match scores. This study is dedicated to the development of a machine learning framework aimed at devising novel antimicrobial peptide (AMP) sequences potentially effective against Gram-positive /Gram-negative bacteria. In order to design newly generated sequences classified as either AMP or non-AMP, various classification models were trained. These novel sequences underwent validation utilizing the "DBAASP:strain-specific antibacterial prediction based on machine learning approaches and data on AMP sequences" tool. The findings presented herein represent a significant stride in this computational research, streamlining the process of AMP creation or modification within wet lab environments.
抗菌肽(AMPs)引起了研究人员的兴趣,因为它们在对抗抗生素耐药性方面为传统抗生素提供了一种替代方案,并且具有其他药学上重要的特性。最近,计算方法试图从机器学习的角度揭示抗菌活性是如何确定的,其目的是通过纳入基序匹配分数来搜索和找到控制抗菌活性的生物学线索或特征。本研究致力于开发一种机器学习框架,旨在设计出可能对革兰氏阳性/革兰氏阴性细菌有效的新型抗菌肽(AMP)序列。为了对新生成的序列进行分类,判断其是AMP还是非AMP,训练了各种分类模型。利用“DBAASP:基于机器学习方法和AMP序列数据的菌株特异性抗菌预测”工具对这些新序列进行了验证。本文提出的研究结果代表了这一计算研究的重大进展,简化了湿实验室环境中AMP创建或修改的过程。