Suppr超能文献

HELM-GPT:使用生成式预训练转换器进行从头大环肽设计。

HELM-GPT: de novo macrocyclic peptide design using generative pre-trained transformer.

机构信息

Computer Science Program, Computer, Electrical and Mathematical Science and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia.

Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia.

出版信息

Bioinformatics. 2024 Jun 3;40(6). doi: 10.1093/bioinformatics/btae364.

Abstract

MOTIVATION

Macrocyclic peptides hold great promise as therapeutics targeting intracellular proteins. This stems from their remarkable ability to bind flat protein surfaces with high affinity and specificity while potentially traversing the cell membrane. Research has already explored their use in developing inhibitors for intracellular proteins, such as KRAS, a well-known driver in various cancers. However, computational approaches for de novo macrocyclic peptide design remain largely unexplored.

RESULTS

Here, we introduce HELM-GPT, a novel method that combines the strength of the hierarchical editing language for macromolecules (HELM) representation and generative pre-trained transformer (GPT) for de novo macrocyclic peptide design. Through reinforcement learning (RL), our experiments demonstrate that HELM-GPT has the ability to generate valid macrocyclic peptides and optimize their properties. Furthermore, we introduce a contrastive preference loss during the RL process, further enhanced the optimization performance. Finally, to co-optimize peptide permeability and KRAS binding affinity, we propose a step-by-step optimization strategy, demonstrating its effectiveness in generating molecules fulfilling both criteria. In conclusion, the HELM-GPT method can be used to identify novel macrocyclic peptides to target intracellular proteins.

AVAILABILITY AND IMPLEMENTATION

The code and data of HELM-GPT are freely available on GitHub (https://github.com/charlesxu90/helm-gpt).

摘要

动机

大环肽作为靶向细胞内蛋白质的治疗药物具有很大的潜力。这源于它们与平面蛋白质表面结合的高亲和力和特异性的非凡能力,同时有可能穿透细胞膜。研究已经探索了它们在开发细胞内蛋白质抑制剂(如 KRAS)中的应用,KRAS 是各种癌症中的一个众所周知的驱动因素。然而,从头设计大环肽的计算方法在很大程度上仍未得到探索。

结果

在这里,我们介绍了 HELM-GPT,这是一种将大分子层次编辑语言(HELM)表示与生成式预训练转换器(GPT)相结合的新方法,用于从头设计大环肽。通过强化学习(RL),我们的实验表明 HELM-GPT 具有生成有效大环肽并优化其性质的能力。此外,我们在 RL 过程中引入了对比偏好损失,进一步增强了优化性能。最后,为了共同优化肽通透性和 KRAS 结合亲和力,我们提出了一种逐步优化策略,证明了其在生成同时满足这两个标准的分子方面的有效性。总之,HELM-GPT 方法可用于鉴定新型大环肽以靶向细胞内蛋白质。

可用性和实现

HELM-GPT 的代码和数据可在 GitHub(https://github.com/charlesxu90/helm-gpt)上免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1318/11256930/44c699ac639c/btae364f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验