Suppr超能文献

从药物与人蛋白质组结构的结合亲和力预测治疗效果和副作用。

Predicting therapeutic and side effects from drug binding affinities to human proteome structures.

作者信息

Sawada Ryusuke, Sakajiri Yuko, Shibata Tomokazu, Yamanishi Yoshihiro

机构信息

Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan.

Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

出版信息

iScience. 2024 May 20;27(6):110032. doi: 10.1016/j.isci.2024.110032. eCollection 2024 Jun 21.

Abstract

Evaluation of the binding affinities of drugs to proteins is a crucial process for identifying drug pharmacological actions, but it requires three dimensional structures of proteins. Herein, we propose novel computational methods to predict the therapeutic indications and side effects of drug candidate compounds from the binding affinities to human protein structures on a proteome-wide scale. Large-scale docking simulations were performed for 7,582 drugs with 19,135 protein structures revealed by AlphaFold (including experimentally unresolved proteins), and machine learning models on the proteome-wide binding affinity score (PBAS) profiles were constructed. We demonstrated the usefulness of the method for predicting the therapeutic indications for 559 diseases and side effects for 285 toxicities. The method enabled to predict drug indications for which the related protein structures had not been experimentally determined and to successfully extract proteins eliciting the side effects. The proposed method will be useful in various applications in drug discovery.

摘要

评估药物与蛋白质的结合亲和力是确定药物药理作用的关键过程,但这需要蛋白质的三维结构。在此,我们提出了新的计算方法,以在蛋白质组范围内从药物候选化合物与人类蛋白质结构的结合亲和力预测其治疗适应症和副作用。对7582种药物与AlphaFold揭示的19135种蛋白质结构(包括实验未解析的蛋白质)进行了大规模对接模拟,并构建了基于蛋白质组范围结合亲和力评分(PBAS)图谱的机器学习模型。我们证明了该方法在预测559种疾病的治疗适应症和285种毒性的副作用方面的有效性。该方法能够预测相关蛋白质结构尚未通过实验确定的药物适应症,并成功提取引发副作用的蛋白质。所提出的方法将在药物发现的各种应用中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ef/11167438/b1b7459d8ed7/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验