Suppr超能文献

基于从肠道微生物群单核苷酸变异中鉴定出的基因标记建立一种新型炎症性肠病预测模型。

Establishing a novel inflammatory bowel disease prediction model based on gene markers identified from single nucleotide variants of the intestinal microbiota.

作者信息

Jiang Shuaiming, Chen Denghui, Ma Chenchen, Liu Huanwei, Huang Shi, Zhang Jiachao

机构信息

College of Food Science and Engineering Hainan University Haikou China.

Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou China.

出版信息

Imeta. 2022 Jul 24;1(3):e40. doi: 10.1002/imt2.40. eCollection 2022 Sep.

Abstract

The intestinal microbiota is a crucial environmental factor in the development of inflammatory bowel disease (IBD). The abundance of is significantly decreased in IBD patients, which is used as a biomarker for IBD diagnosis. However, this can be observed in both IBD and colorectal cancer, which would confound the diagnostic results. Thus, we first established a new model for predicting Crohn's disease (CD) with high precision according to gene characteristics based on single nucleotide variants (SNVs). Next, five gene markers belonging to two species, and , that were enriched in the CD group were obtained to build a CD prediction model, and high accuracy in distinguishing the CD and control groups was observed in the discovery (area under curve [AUC] = 91.13%) and validation cohorts (AUC = 79.55%). The model still maintained high accuracy after expanding the healthy cohort (AUC = 89.75%). High disease specificity in distinguishing CD and CRC groups (AUC = 95.74%) was also proven. This study establishes a novel diagnostic method for predicting IBD that also provides unprecedented insight for the early, painless diagnosis of other non-communicable diseases.

摘要

肠道微生物群是炎症性肠病(IBD)发展过程中的一个关键环境因素。在IBD患者中,[具体物质名称缺失]的丰度显著降低,它被用作IBD诊断的生物标志物。然而,在IBD和结直肠癌中均可观察到这种情况,这会混淆诊断结果。因此,我们首先根据基于单核苷酸变异(SNV)的基因特征建立了一种高精度预测克罗恩病(CD)的新模型。接下来,获得了属于两个物种([具体物种名称缺失]和[具体物种名称缺失])的五个在CD组中富集的基因标志物,以构建CD预测模型,在发现队列(曲线下面积[AUC]=91.13%)和验证队列(AUC=79.55%)中观察到该模型在区分CD组和对照组方面具有较高的准确性。在扩大健康队列后,该模型仍保持较高的准确性(AUC=89.75%)。还证明了该模型在区分CD组和结直肠癌(CRC)组方面具有较高的疾病特异性(AUC=95.74%)。本研究建立了一种预测IBD的新型诊断方法,也为其他非传染性疾病的早期无痛诊断提供了前所未有的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c706/10989788/e128c5132123/IMT2-1-e40-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验