Suppr超能文献

关于基于神经生物学知识的脑电图测量困倦程度的考量。

Considerations towards a neurobiologically-informed EEG measurement of sleepiness.

作者信息

Chatburn Alex, Lushington Kurt, Cross Zachariah R

机构信息

Cognitive Neuroscience Laboratory, University of South Australia, Adelaide, Australia.

Cognitive Neuroscience Laboratory, University of South Australia, Adelaide, Australia; Centre for Behaviour-Brain-Body: Justice and Society Unit, University of South Australia, Adelaide, South Australia, Australia.

出版信息

Brain Res. 2024 Oct 15;1841:149088. doi: 10.1016/j.brainres.2024.149088. Epub 2024 Jun 13.

Abstract

Sleep is a daily experience across humans and other species, yet our understanding of how and why we sleep is presently incomplete. This is particularly prevalent in research examining the neurophysiological measurement of sleepiness in humans, where several electroencephalogram (EEG) phenomena have been linked with prolonged wakefulness. This leaves researchers without a solid basis for the measurement of homeostatic sleep need and complicates our understanding of the nature of sleep. Recent theoretical and technical advances may allow for a greater understanding of the neurobiological basis of homeostatic sleep need: this may result from increases in neuronal excitability and shifts in excitation/inhibition balance in neuronal circuits and can potentially be directly measured via the aperiodic component of the EEG. Here, we review the literature on EEG-derived markers of sleepiness in humans and argue that changes in these electrophysiological markers may actually result from neuronal activity represented by changes in aperiodic markers. We argue for the use of aperiodic markers derived from the EEG in predicting sleepiness and suggest areas for future research based on these.

摘要

睡眠是人类和其他物种的日常体验,但我们目前对睡眠方式及原因的理解并不完整。这在研究人类嗜睡的神经生理学测量时尤为普遍,在该研究中,几种脑电图(EEG)现象与长时间清醒有关。这使得研究人员在测量稳态睡眠需求时缺乏坚实的基础,并使我们对睡眠本质的理解变得复杂。最近的理论和技术进展可能会让我们更好地理解稳态睡眠需求的神经生物学基础:这可能是由于神经元兴奋性增加以及神经元回路中兴奋/抑制平衡的改变导致的,并且有可能通过脑电图的非周期性成分直接测量。在此,我们回顾了关于人类脑电图衍生的嗜睡标志物的文献,并认为这些电生理标志物的变化实际上可能是由非周期性标志物变化所代表的神经元活动引起的。我们主张使用脑电图衍生的非周期性标志物来预测嗜睡,并基于此提出未来研究的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验