Suppr超能文献

从分子SMILE预测ADMET属性:一种使用基于注意力的图神经网络的自下而上方法。

Predicting ADMET Properties from Molecule SMILE: A Bottom-Up Approach Using Attention-Based Graph Neural Networks.

作者信息

De Carlo Alessandro, Ronchi Davide, Piastra Marco, Tosca Elena Maria, Magni Paolo

机构信息

Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, 27100 Pavia, Italy.

出版信息

Pharmaceutics. 2024 Jun 7;16(6):776. doi: 10.3390/pharmaceutics16060776.

Abstract

Understanding the pharmacokinetics, safety and efficacy of candidate drugs is crucial for their success. One key aspect is the characterization of absorption, distribution, metabolism, excretion and toxicity (ADMET) properties, which require early assessment in the drug discovery and development process. This study aims to present an innovative approach for predicting ADMET properties using attention-based graph neural networks (GNNs). The model utilizes a graph-based representation of molecules directly derived from Simplified Molecular Input Line Entry System (SMILE) notation. Information is processed sequentially, from substructures to the whole molecule, employing a bottom-up approach. The developed GNN is tested and compared with existing approaches using six benchmark datasets and by encompassing regression (lipophilicity and aqueous solubility) and classification (CYP2C9, CYP2C19, CYP2D6 and CYP3A4 inhibition) tasks. Results show the effectiveness of our model, which bypasses the computationally expensive retrieval and selection of molecular descriptors. This approach provides a valuable tool for high-throughput screening, facilitating early assessment of ADMET properties and enhancing the likelihood of drug success in the development pipeline.

摘要

了解候选药物的药代动力学、安全性和有效性对其成功至关重要。一个关键方面是对吸收、分布、代谢、排泄和毒性(ADMET)特性的表征,这需要在药物发现和开发过程中进行早期评估。本研究旨在提出一种使用基于注意力的图神经网络(GNN)预测ADMET特性的创新方法。该模型利用直接从简化分子输入线输入系统(SMILE)符号派生的分子的基于图的表示。信息采用自下而上的方法,从子结构到整个分子依次进行处理。使用六个基准数据集,并通过涵盖回归(亲脂性和水溶性)和分类(CYP2C9、CYP2C19、CYP2D6和CYP3A4抑制)任务,对开发的GNN进行测试并与现有方法进行比较。结果表明我们模型的有效性,它绕过了计算成本高昂的分子描述符检索和选择。这种方法为高通量筛选提供了一个有价值的工具,有助于早期评估ADMET特性,并提高药物在开发管道中成功的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e05e/11207804/e74a8a819162/pharmaceutics-16-00776-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验