Bayer Thomas, Palm Gottfried J, Berndt Leona, Meinert Hannes, Branson Yannick, Schmidt Louis, Cziegler Clemens, Somvilla Ina, Zurr Celine, Graf Leonie G, Janke Una, Badenhorst Christoffel P S, König Stefanie, Delcea Mihaela, Garscha Ulrike, Wei Ren, Lammers Michael, Bornscheuer Uwe T
Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany.
Department of Synthetic & Structural Biochemistry Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany.
Angew Chem Int Ed Engl. 2024 Sep 16;63(38):e202404492. doi: 10.1002/anie.202404492. Epub 2024 Aug 16.
While plastics like polyethylene terephthalate can already be degraded efficiently by the activity of hydrolases, other synthetic polymers like polyurethanes (PUs) and polyamides (PAs) largely resist biodegradation. In this study, we solved the first crystal structure of the metagenomic urethanase UMG-SP-1, identified highly flexible loop regions to comprise active site residues, and targeted a total of 20 potential hot spots by site-saturation mutagenesis. Engineering campaigns yielded variants with single mutations, exhibiting almost 3- and 8-fold improved activity against highly stable N-aryl urethane and amide bonds, respectively. Furthermore, we demonstrated the release of the corresponding monomers from a thermoplastic polyester-PU and a PA (nylon 6) by the activity of a single, metagenome-derived urethanase after short incubation times. Thereby, we expanded the hydrolysis profile of UMG-SP-1 beyond the reported low-molecular weight carbamates. Together, these findings promise advanced strategies for the bio-based degradation and recycling of plastic materials and waste, aiding efforts to establish a circular economy for synthetic polymers.
虽然像聚对苯二甲酸乙二酯这样的塑料已经可以通过水解酶的活性被高效降解,但其他合成聚合物,如聚氨酯(PUs)和聚酰胺(PAs),在很大程度上抵抗生物降解。在本研究中,我们解析了宏基因组来源的脲酶UMG-SP-1的首个晶体结构,确定高度灵活的环区域包含活性位点残基,并通过位点饱和诱变总共靶向了20个潜在热点。工程改造产生了具有单突变的变体,分别对高度稳定的N-芳基脲键和酰胺键表现出近3倍和8倍的活性提高。此外,我们证明了在短孵育时间后,单一宏基因组来源的脲酶的活性可使热塑性聚酯-聚氨酯和聚酰胺(尼龙6)释放出相应的单体。由此,我们将UMG-SP-1的水解谱扩展到了报道的低分子量氨基甲酸盐之外。总之,这些发现为塑料材料和废物的生物基降解及回收提供了先进策略,有助于为合成聚合物建立循环经济的努力。