Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China.
Environ Res. 2024 Oct 15;259:119562. doi: 10.1016/j.envres.2024.119562. Epub 2024 Jul 4.
Elucidating the formation mechanism of plastisphere antibiotic resistance genes (ARGs) on different polymers is necessary to understand the ecological risks of plastisphere ARGs. Here, we explored the turnover and assembly mechanism of plastisphere ARGs on 8 different microplastic polymers (4 biodegradable (bMPs) and 4 non-biodegradable microplastics (nMPs)) by metagenomic sequencing. Our study revealed the presence of 479 ARGs with abundance ranging from 41.37 to 58.17 copies/16S rRNA gene in all plastispheres. These ARGs were predominantly multidrug resistance genes. The richness of plastisphere ARGs on different polymers had a significant correlation with the contribution of species turnover to plastisphere ARGs β diversity. Furthermore, polymer type was the most critical factor affecting the composition of plastisphere ARGs. More opportunistic pathogens carrying diverse ARGs on BMPs (PBAT, PBS, and PHA) with higher horizontal gene transfer potential may further magnify the ecological risks and human health threats. For example, the opportunistic pathogens Riemerella anatipestifer, Vibrio campbellii, and Vibrio cholerae are closely related to human production and life, which were the important potential hosts of many plastisphere ARGs and mobile genetic elements on BMPs. Thus, we emphasize the urgency of developing the formation mechanism of plastisphere ARGs and the necessity of controlling BMPs and ARG pollution, especially BMPs, with ever-increasing usage in daily life.
阐明不同聚合物上塑料圈抗生素耐药基因(ARGs)的形成机制对于理解塑料圈 ARGs 的生态风险是必要的。在这里,我们通过宏基因组测序探索了 8 种不同微塑料聚合物(4 种可生物降解(bMPs)和 4 种不可生物降解微塑料(nMPs))上塑料圈 ARGs 的周转和组装机制。我们的研究揭示了所有塑料圈内存在 479 种丰度范围为 41.37 至 58.17 拷贝/16S rRNA 基因的 ARGs。这些 ARGs 主要是多药耐药基因。不同聚合物上塑料圈 ARGs 的丰富度与物种周转对塑料圈 ARGs β多样性的贡献有显著相关性。此外,聚合物类型是影响塑料圈 ARGs 组成的最关键因素。具有更高水平基因转移潜力的 BMP(PBAT、PBS 和 PHA)上携带多种 ARGs 的机会性病原体可能会进一步放大生态风险和人类健康威胁。例如,机会性病原体 Riemerella anatipestifer、Vibrio campbellii 和 Vibrio cholerae 与人类的生产和生活密切相关,它们是 BMP 上许多塑料圈 ARGs 和可移动遗传元件的重要潜在宿主。因此,我们强调迫切需要研究塑料圈 ARGs 的形成机制,并需要控制 BMPs 和 ARG 污染,特别是在日常生活中使用越来越多的 BMPs 时。