Suppr超能文献

固有抗菌耐药性:用于对抗微生物生物膜和细菌持久体的分子生物材料。

Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters.

机构信息

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States.

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.

出版信息

Biomaterials. 2024 Dec;311:122690. doi: 10.1016/j.biomaterials.2024.122690. Epub 2024 Jun 28.

Abstract

The escalating rise in antimicrobial resistance (AMR) coupled with a declining arsenal of new antibiotics is imposing serious threats to global public health. A pervasive aspect of many acquired AMR infections is that the pathogenic microorganisms exist as biofilms, which are equipped with superior survival strategies. In addition, persistent and recalcitrant infections are seeded with bacterial persister cells at infection sites. Together, conventional antibiotic therapeutics often fail in the complete treatment of infections associated with bacterial persisters and biofilms. Novel therapeutics have been attempted to tackle AMR, biofilms, and persister-associated complex infections. This review focuses on the progress in designing molecular biomaterials and therapeutics to address acquired and intrinsic AMR, and the fundamental microbiology behind biofilms and persisters. Starting with a brief introduction of AMR basics and approaches to tackling acquired AMR, the emphasis is placed on various biomaterial approaches to combating intrinsic AMR, including (1) semi-synthetic antibiotics; (2) macromolecular or polymeric biomaterials mimicking antimicrobial peptides; (3) adjuvant effects in synergy; (4) nano-therapeutics; (5) nitric oxide-releasing antimicrobials; (6) antimicrobial hydrogels; (7) antimicrobial coatings. Particularly, the structure-activity relationship is elucidated in each category of these biomaterials. Finally, illuminating perspectives are provided for the future design of molecular biomaterials to bypass AMR and cure chronic multi-drug resistant (MDR) infections.

摘要

抗生素耐药性(AMR)的不断上升,加上新抗生素储备的不断减少,对全球公共卫生构成了严重威胁。许多获得性 AMR 感染的一个普遍方面是,病原微生物以生物膜的形式存在,而生物膜则具备更优越的生存策略。此外,在感染部位,持续性和难治性感染会以细菌持久细胞为种子。总之,传统的抗生素疗法常常无法完全治疗与细菌持久细胞和生物膜相关的感染。人们已经尝试了新的疗法来应对 AMR、生物膜和与持久细胞相关的复杂感染。本综述重点介绍了设计分子生物材料和疗法以应对获得性和固有 AMR 以及生物膜和持久细胞背后的基本微生物学的进展。本文首先简要介绍了 AMR 的基础知识和应对获得性 AMR 的方法,重点介绍了各种生物材料方法来对抗固有 AMR,包括(1)半合成抗生素;(2)模拟抗菌肽的大分子或聚合物生物材料;(3)协同增效的佐剂作用;(4)纳米疗法;(5)释放一氧化氮的抗菌剂;(6)抗菌水凝胶;(7)抗菌涂层。特别是,在这些生物材料的每一类中都阐明了结构-活性关系。最后,为未来设计分子生物材料以绕过 AMR 和治疗慢性多药耐药(MDR)感染提供了有启发性的观点。

相似文献

1
Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters.
Biomaterials. 2024 Dec;311:122690. doi: 10.1016/j.biomaterials.2024.122690. Epub 2024 Jun 28.
2
Combating bacterial biofilms and related drug resistance: Role of phyto-derived adjuvant and nanomaterials.
Microb Pathog. 2024 Oct;195:106874. doi: 10.1016/j.micpath.2024.106874. Epub 2024 Aug 22.
3
Polymeric Biomaterials for Prevention and Therapeutic Intervention of Microbial Infections.
Biomacromolecules. 2022 Mar 14;23(3):592-608. doi: 10.1021/acs.biomac.1c01528. Epub 2022 Feb 21.
5
Prevention of microbial biofilms - the contribution of micro and nanostructured materials.
Curr Med Chem. 2014;21(29):3311. doi: 10.2174/0929867321666140304101314.
7
Multidrug tolerance of biofilms and persister cells.
Curr Top Microbiol Immunol. 2008;322:107-31. doi: 10.1007/978-3-540-75418-3_6.
8
Bacterial persisters: molecular mechanisms and therapeutic development.
Signal Transduct Target Ther. 2024 Jul 17;9(1):174. doi: 10.1038/s41392-024-01866-5.
9
Mechanisms of Antimicrobial Resistance (AMR) and Alternative Approaches to Overcome AMR.
Curr Drug Discov Technol. 2020;17(4):430-447. doi: 10.2174/1570163816666190304122219.
10

引用本文的文献

2
Marine Antimicrobial Peptides: Emerging Strategies Against Multidrug-Resistant and Biofilm-Forming Bacteria.
Antibiotics (Basel). 2025 Aug 7;14(8):808. doi: 10.3390/antibiotics14080808.
3
Recent advances in the understanding, detection and therapeutic targeting of bacterial recalcitrance.
BMC Microbiol. 2025 Aug 8;25(1):488. doi: 10.1186/s12866-025-04210-1.
5
Multifunctional DNA hydrogels with light-triggered gas-therapy and controlled G-Exos release for infected wound healing.
Bioact Mater. 2025 Jun 14;52:422-437. doi: 10.1016/j.bioactmat.2025.06.004. eCollection 2025 Oct.
7
Effects of Biofilm Formation on Gastrointestinal Tolerance, Mucoadhesion and Transcriptomic Responses of Probiotics.
Food Sci Nutr. 2025 May 14;13(5):e70206. doi: 10.1002/fsn3.70206. eCollection 2025 May.
8
Nanomaterials: A Prospective Strategy for Biofilm-Forming Treatment.
Int J Nanomedicine. 2025 Apr 23;20:5209-5229. doi: 10.2147/IJN.S512066. eCollection 2025.
9
Comparative evaluation of antimicrobial peptides: effect on formation, metabolic activity and viability of biofilms.
Front Microbiol. 2025 Apr 11;16:1548362. doi: 10.3389/fmicb.2025.1548362. eCollection 2025.

本文引用的文献

1
Antimicrobial Hydrogels: Potential Materials for Medical Application.
Small. 2024 Feb;20(5):e2304047. doi: 10.1002/smll.202304047. Epub 2023 Sep 26.
2
Facial amphiphilic naphthoic acid-derived antimicrobial polymers against multi-drug resistant gram-negative bacteria and biofilms.
Biomaterials. 2023 Oct;301:122275. doi: 10.1016/j.biomaterials.2023.122275. Epub 2023 Aug 12.
3
Membrane-Active Metallopolymers: Repurposing and Rehabilitating Antibiotics to Gram-Negative Superbugs.
Adv Healthc Mater. 2023 Dec;12(31):e2301764. doi: 10.1002/adhm.202301764. Epub 2023 Aug 30.
4
Facially Amphiphilic Bile Acid-Functionalized Antimicrobials: Combating Pathogenic Bacteria, Fungi, and Their Biofilms.
ACS Infect Dis. 2023 Sep 8;9(9):1769-1782. doi: 10.1021/acsinfecdis.3c00266. Epub 2023 Aug 3.
5
A rapid-crosslinking antimicrobial hydrogel with enhanced antibacterial capabilities for improving wound healing.
Front Physiol. 2023 May 30;14:1206211. doi: 10.3389/fphys.2023.1206211. eCollection 2023.
6
A Bifunctional Spray Coating Reduces Contamination on Surfaces by Repelling and Killing Pathogens.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):16253-16265. doi: 10.1021/acsami.2c23119. Epub 2023 Mar 16.
7
An injectable multifunctional hydrogel for eradication of bacterial biofilms and wound healing.
Acta Biomater. 2023 Apr 15;161:112-133. doi: 10.1016/j.actbio.2023.03.008. Epub 2023 Mar 11.
8
An Antibacterial Polypeptide Coating Prepared by Enzymatic Polymerization for Preventing Delayed Infection of Implants.
ACS Biomater Sci Eng. 2023 Apr 10;9(4):1900-1908. doi: 10.1021/acsbiomaterials.3c00131. Epub 2023 Mar 6.
9
Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation.
Sci Adv. 2023 Jan 25;9(4):eadd7474. doi: 10.1126/sciadv.add7474.
10
A polypeptide coating for preventing biofilm on implants by inhibiting antibiotic resistance genes.
Biomaterials. 2023 Feb;293:121957. doi: 10.1016/j.biomaterials.2022.121957. Epub 2022 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验