Purdue University, Department of Biological Sciences, 915 W State St, West Lafayette, IN, USA; Tyumen State University, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen, Russia.
Crop Research Institute, Department of Stored Product and Food Safety, Prague, Czechia; Czech University of Life Science, Faculty of Microbiology Nutrient and Dietics, Prague, Czechia.
Int J Parasitol. 2024 Nov;54(13):661-674. doi: 10.1016/j.ijpara.2024.07.001. Epub 2024 Jul 9.
Tyrophagus putrescentiae (mould mite) is a global, microscopic trophic generalist that commonly occurs in various human-created habitats, causing allergies and damaging stored food. Its ubiquity and extraordinary ability to penetrate research samples or cultures through air currents or by active walking through tights spaces (such as treads of screw caps) may lead to sample contamination and introduction of its DNA to research materials in the laboratory. This prompts a thorough investigation into potential sequence contamination in public genomic databases. The trophic success of T. putrescentiae is primarily attributed to the symbiotic bacteria housed in specialized internal mite structures, facilitating adaptation to varied nutritional niches. However, recent work suggests that horizontal transfer of bacterial/fungal genes related to nutritional functionality may also contribute to the mite's trophic versatility. This aspect requires independent confirmation. Additionally, T. putrescentiae harbors an uncharacterized and genetically divergent bacterium, Wolbachia, displaying blocking and microbiome-modifying effects. The phylogenomic position and supergroup assignment of this bacterium are unknown. Here, we sequenced and assembled the T. putrescentiae genome, analyzed its microbiome, and performed detailed phylogenomic analyses of the mite-specific Wolbachia. We show that T. putrescentiae DNA is a substantial source of contamination of research samples. Its DNA may inadvertently be co-extracted with the DNA of the target organism, eventually leading to sequence contamination in public databases. We identified a diversity of bacterial species associated with T. putrescentiae, including those capable of rapidly developing antibiotic resistance, such as Escherichia coli. Despite the presence of diverse bacterial communities in T. putrescentiae, we did not detect any recent horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general. Our phylogenomic analysis of Wolbachia recovered a basal, mite-specific lineage (supergroup Q) represented by two Wolbachia spp. from the mould mite and a gall-inducing plant mite. Fluorescence in situ hybridization confirmed the presence of Wolbachia inside the mould mite. The discovery of an early derivative Wolbachia lineage (supergroup Q) in two phylogenetically unrelated and ecologically dissimilar mites suggests that this endosymbiotic bacterial lineage formed a long-term association with mites. This finding provides a unique insight into the early evolution and host associations of Wolbachia. Further discoveries of Wolbachia diversity in acariform mites are anticipated.
腐食酪螨(模食螨)是一种全球性的、微观的营养全能型生物,常见于各种人为栖息地,会引起过敏反应并破坏储存的食物。它无处不在,并且具有非凡的能力,可以通过气流或通过在狭小空间(如螺旋盖的螺纹)中主动行走来穿透研究样本或培养物,这可能导致样本污染,并将其 DNA 引入实验室中的研究材料中。这促使人们对公共基因组数据库中潜在的序列污染进行彻底调查。腐食酪螨的营养成功主要归因于其寄居在专门的内部螨结构中的共生细菌,这有助于它们适应各种营养小生境。然而,最近的研究表明,与营养功能相关的细菌/真菌基因的水平转移也可能有助于螨的营养多功能性。这一方面需要独立证实。此外,腐食酪螨还携带一种未被描述的、遗传上差异很大的细菌沃尔巴克氏体(Wolbachia),具有阻断和微生物组修饰作用。这种细菌的系统发育位置和超级群分配尚不清楚。在这里,我们对腐食酪螨进行了测序和组装,分析了其微生物组,并对螨特异性沃尔巴克氏体进行了详细的系统基因组分析。我们表明,腐食酪螨的 DNA 是研究样本污染的主要来源。它的 DNA 可能会无意中与目标生物的 DNA 一起被共同提取,最终导致公共数据库中的序列污染。我们鉴定出了与腐食酪螨相关的多种细菌物种,包括那些能够迅速产生抗生素耐药性的细菌,如大肠杆菌。尽管腐食酪螨体内存在多样化的细菌群落,但我们没有检测到该螨种或一般的粉螨(家庭)中存在任何近期的水平基因转移。我们对沃尔巴克氏体的系统基因组分析回收了一个由来自模食螨和一种诱导植物结瘤的植食螨的两种沃尔巴克氏体代表的基础、螨特异性谱系(超级群 Q)。荧光原位杂交技术证实了沃尔巴克氏体存在于模食螨体内。在两种系统发育上不相关且生态上不同的螨中发现了早期衍生的沃尔巴克氏体谱系(超级群 Q),这表明这种内共生细菌谱系与螨形成了长期的关联。这一发现为沃尔巴克氏体的早期进化和宿主关联提供了独特的见解。预计将进一步发现食螨类螨中的沃尔巴克氏体多样性。