Comstock Will, Sanford Ethan, Navarro Marcos, Smolka Marcus B
Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
bioRxiv. 2024 Jul 5:2024.07.03.601872. doi: 10.1101/2024.07.03.601872.
The stability of the genome relies on Phosphatidyl Inositol 3-Kinase-related Kinases (PIKKs) that sense DNA damage and trigger elaborate downstream signaling responses. In , the Tel1 kinase (ortholog of human ATM) is activated at DNA double strand breaks (DSBs) and short telomeres. Despite the well-established roles of Tel1 in the control of telomere maintenance, suppression of chromosomal rearrangements, activation of cell cycle checkpoints, and repair of DSBs, the substrates through which Tel1 controls these processes remain incompletely understood. Here we performed an in depth phosphoproteomic screen for Tel1-dependent phosphorylation events. To achieve maximal coverage of the phosphoproteome, we developed a scaled-up approach that accommodates large amounts of protein extracts and chromatographic fractions. Compared to previous reports, we expanded the number of detected Tel1-dependent phosphorylation events by over 10-fold. Surprisingly, in addition to the identification of phosphorylation sites featuring the canonical motif for Tel1 phosphorylation (S/T-Q), the results revealed a novel motif (D/E-S/T) highly prevalent and enriched in the set of Tel1-dependent events. This motif is unique to Tel1 signaling and not shared with the Mec1 kinase, providing clues to how Tel1 plays specialized roles in DNA repair and telomere length control. Overall, these findings define a Tel1-signaling network targeting numerous proteins involved in DNA repair, chromatin regulation, and telomere maintenance that represents a framework for dissecting the molecular mechanisms of Tel1 action.
基因组的稳定性依赖于磷脂酰肌醇3-激酶相关激酶(PIKKs),它们能感知DNA损伤并触发复杂的下游信号反应。在酵母中,Tel1激酶(人类ATM的直系同源物)在DNA双链断裂(DSBs)和短端粒处被激活。尽管Tel1在控制端粒维持、抑制染色体重排、激活细胞周期检查点以及修复DSBs方面的作用已得到充分证实,但其控制这些过程的底物仍未完全了解。在这里,我们对Tel1依赖性磷酸化事件进行了深入的磷酸化蛋白质组学筛选。为了实现对磷酸化蛋白质组的最大覆盖,我们开发了一种放大方法,可容纳大量蛋白质提取物和色谱级分。与之前的报告相比,我们检测到的Tel1依赖性磷酸化事件数量增加了10倍以上。令人惊讶的是,除了鉴定出具有Tel1磷酸化经典基序(S/T-Q)的磷酸化位点外,结果还揭示了一个在Tel1依赖性事件组中高度普遍且富集的新基序(D/E-S/T)。这个基序是Tel1信号通路所特有的,与Mec1激酶不共享,这为Tel1在DNA修复和端粒长度控制中如何发挥特殊作用提供了线索。总体而言,这些发现定义了一个Tel1信号网络,其靶向众多参与DNA修复、染色质调控和端粒维持的蛋白质,这代表了一个剖析Tel1作用分子机制的框架。