Suppr超能文献

向导 RNA 序列决定 Argonaute 沉默复合物的切割动力学和构象动力学。

The guide-RNA sequence dictates the slicing kinetics and conformational dynamics of the Argonaute silencing complex.

机构信息

Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Mol Cell. 2024 Aug 8;84(15):2918-2934.e11. doi: 10.1016/j.molcel.2024.06.026. Epub 2024 Jul 17.

Abstract

The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that, for different guide-RNA sequences, slicing rates of perfectly complementary bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.

摘要

RNA 诱导沉默复合物(RISC)是 RNA 干扰(RNAi)的动力源,由向导 RNA 和 Argonaute 蛋白组成,可将与向导互补的靶 RNA 切割。我们发现,对于不同的向导 RNA 序列,完美互补结合的靶标切割率可能差异惊人(>250 倍),而且更快的切割能在细胞中实现更好的敲低效果。在向导 RNA 位置 7、10 和 17 的核苷酸序列同一性是导致这种切割率差异的主要原因。对其中一个决定因素的分析表明,向导核苷酸 6-7 的结构扭曲有助于促进切割。此外,由不同向导序列指导的切割具有出人意料的 600 倍的 3'-错配容忍度范围,这归因于具有较弱(富含 AU)中心配对的向导需要广泛的 3'互补性(配对超过位置 16),以更充分地填充切割能力构象。总的来说,我们的分析确定了 RISC 活性的序列决定因素,并为它们的作用提供了生化和构象依据。

相似文献

1
The guide-RNA sequence dictates the slicing kinetics and conformational dynamics of the Argonaute silencing complex.
Mol Cell. 2024 Aug 8;84(15):2918-2934.e11. doi: 10.1016/j.molcel.2024.06.026. Epub 2024 Jul 17.
3
C-terminal tagging impairs AGO2 function.
RNA Biol. 2025 Dec;22(1):1-24. doi: 10.1080/15476286.2025.2534028. Epub 2025 Jul 23.
4
Kinetic Analysis of Target RNA Binding and Slicing by Human Argonaute 2 Protein.
Methods Mol Biol. 2017;1517:277-290. doi: 10.1007/978-1-4939-6563-2_19.
6
Analysis of the Contribution of 6-mer Seed Toxicity to HIV-1-Induced Cytopathicity.
J Virol. 2023 Jul 27;97(7):e0065223. doi: 10.1128/jvi.00652-23. Epub 2023 Jun 13.
7
Mechanistic insights into RNA cleavage by human Argonaute2-siRNA complex.
Cell Res. 2025 Apr 16. doi: 10.1038/s41422-025-01114-7.
8
The structural basis for RNA slicing by human Argonaute2.
Cell Rep. 2025 Jan 28;44(1):115166. doi: 10.1016/j.celrep.2024.115166. Epub 2024 Dec 31.

引用本文的文献

1
Sequence, structure, and affinity of miR-34a binding sites determine repression efficacy.
Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf633.
2
A unifying model for microRNA-guided silencing of messenger RNAs.
Res Sq. 2025 Apr 22:rs.3.rs-6422368. doi: 10.21203/rs.3.rs-6422368/v1.
3
Mapping effective microRNA pairing beyond the seed using abasic modifications.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf364.
4
Mechanistic insights into RNA cleavage by human Argonaute2-siRNA complex.
Cell Res. 2025 Apr 16. doi: 10.1038/s41422-025-01114-7.
5
A unifying model for microRNA-guided silencing of messenger RNAs.
bioRxiv. 2025 Mar 17:2025.03.16.643529. doi: 10.1101/2025.03.16.643529.
6
The structural basis for RNA slicing by human Argonaute2.
Cell Rep. 2025 Jan 28;44(1):115166. doi: 10.1016/j.celrep.2024.115166. Epub 2024 Dec 31.
7
Structural basis for gene silencing by siRNAs in humans.
bioRxiv. 2024 Dec 6:2024.12.05.627081. doi: 10.1101/2024.12.05.627081.
8
Target cleavage and gene silencing by Argonautes with cityRNAs.
Cell Rep. 2024 Oct 22;43(10):114806. doi: 10.1016/j.celrep.2024.114806. Epub 2024 Oct 4.
9
The structural basis for RNA slicing by human Argonaute2.
bioRxiv. 2024 Aug 20:2024.08.19.608718. doi: 10.1101/2024.08.19.608718.

本文引用的文献

1
RNA interference in the era of nucleic acid therapeutics.
Nat Biotechnol. 2024 Mar;42(3):394-405. doi: 10.1038/s41587-023-02105-y. Epub 2024 Feb 26.
2
Relaxed targeting rules help PIWI proteins silence transposons.
Nature. 2023 Jul;619(7969):394-402. doi: 10.1038/s41586-023-06257-4. Epub 2023 Jun 21.
3
Evaluation of RNAi therapeutics VIR-2218 and ALN-HBV for chronic hepatitis B: Results from randomized clinical trials.
J Hepatol. 2023 Oct;79(4):924-932. doi: 10.1016/j.jhep.2023.05.023. Epub 2023 Jun 7.
4
Structural basis for RNA slicing by a plant Argonaute.
Nat Struct Mol Biol. 2023 Jun;30(6):778-784. doi: 10.1038/s41594-023-00989-7. Epub 2023 May 1.
6
MicroRNA turnover: a tale of tailing, trimming, and targets.
Trends Biochem Sci. 2023 Jan;48(1):26-39. doi: 10.1016/j.tibs.2022.06.005. Epub 2022 Jul 7.
7
Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2.
Nat Commun. 2022 Jul 2;13(1):3825. doi: 10.1038/s41467-022-31480-4.
8
Ribosome-associated quality-control mechanisms from bacteria to humans.
Mol Cell. 2022 Apr 21;82(8):1451-1466. doi: 10.1016/j.molcel.2022.03.038.
10
Structural basis for piRNA targeting.
Nature. 2021 Sep;597(7875):285-289. doi: 10.1038/s41586-021-03856-x. Epub 2021 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验