Lleshi Ermira, Milne-Clark Toby, Lee Yu Henson, Martin Henno W, Hanson Robert, Lach Radoslaw, Rossi Sabrina H, Riediger Anja Lisa, Görtz Magdalena, Sültmann Holger, Flewitt Andrew, Lynch Andy G, Gnanapragasam Vincent J, Massie Charlie E, Dev Harveer S
Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK.
Department of Engineering, University of Cambridge, Cambridge, UK.
iScience. 2024 Jun 20;27(7):110330. doi: 10.1016/j.isci.2024.110330. eCollection 2024 Jul 19.
Prostate cancer screening using prostate-specific antigen (PSA) has been shown to reduce mortality but with substantial overdiagnosis, leading to unnecessary biopsies. The identification of a highly specific biomarker using liquid biopsies, represents an unmet need in the diagnostic pathway for prostate cancer. In this study, we employed a method that enriches for methylated cell-free DNA fragments coupled with a machine learning algorithm which enabled the detection of metastatic and localized cancers with AUCs of 0.96 and 0.74, respectively. The model also detected 51.8% (14/27) of localized and 88.7% (79/89) of patients with metastatic cancer in an external dataset. Furthermore, we show that the differentially methylated regions reflect epigenetic and transcriptomic changes at the tissue level. Notably, these regions are significantly enriched for biologically relevant pathways associated with the regulation of cellular proliferation and TGF-beta signaling. This demonstrates the potential of circulating tumor DNA methylation for prostate cancer detection and prognostication.
使用前列腺特异性抗原(PSA)进行前列腺癌筛查已被证明可降低死亡率,但存在大量过度诊断的情况,导致不必要的活检。利用液体活检鉴定一种高度特异性的生物标志物,是前列腺癌诊断途径中尚未满足的需求。在本研究中,我们采用了一种富集甲基化游离DNA片段的方法,并结合一种机器学习算法,该算法能够分别以0.96和0.74的曲线下面积检测转移性癌和局限性癌。该模型在一个外部数据集中还检测出51.8%(14/27)的局限性癌患者和88.7%(79/89)的转移性癌患者。此外,我们表明差异甲基化区域反映了组织水平上的表观遗传和转录组变化。值得注意的是,这些区域在与细胞增殖调节和TGF-β信号传导相关的生物学相关途径中显著富集。这证明了循环肿瘤DNA甲基化在前列腺癌检测和预后评估中的潜力。